CS |34
Flles & List Comprehensions

Announcements & Logistics

Homework 4 due next Mon at | | pm
Lab 4 posted today
Two week lab!
Automated feedback returned after Part | (due next week at usual time)
You can fix your mistakes!
We'll grade everything after you submit Part 2 on second week

Gain experience with lists, strings, file reading, lists of lists

Do You Have Any Questions?

Last [Ime

Learned about adding items to lists using +, append(), and extend()
Began thinking about side effects of mutability in lists

Summarized important string and list methods and operations (so far)
Sequence operators and functions
String methods
List methods

Looked at ranges as an easy way to generate numerical sequences

In [4]: list(range(10))

Out[4]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Joday's Plan

Discuss file reading using lists and strings

Learn about list comprehensions as a way to simplify list
accumulations

Introduce lists of lists (aka 2D lists)

Reading Data from Files

Working with Files in Python

File I/O is a very common and important operation
open(filename, mode) is a built-in Python function for working with files
- filename is a path to a file as a string

+ mode is a string where

+ 'r' - open for reading (default)

+ 'w' - open for writing (will overwrite previous contents)

a - open for appending (will not overwrite previous contents)

Whenever you open a file, you must also close it to avoid memory leaks

We will use the with open .. as code block, which keeps the file open
within it, and automatically closes the file after existing the block

We can iterate over the lines of a text file just as we iterated over strings and
lists in previous lectures

Opening Filesswith .. as

Path to file on computer as a string

with open(filename) as inputFile:

do something with file

Variable name for your file

Note. (syntax) Indentation defines the body of the
with block where the file is open

f = open (filename, 'r')
... file operations involving £ ...
f.close()

@

with open (filename, 'r') as f£f:
... file operations involving £ ...
£ implicitly closed
when with is done.

terating over Lines in a File

- Withinawith open(filename) as inputFile: block we can
iterate over the lines in the file just as we would iterate over any sequence
such as lists, strings, or ranges

- The end of a line in the text file is determined by the special newline
character '\n’

+ Example: We have a text file mountains. txt within a directory
textfiles, so we can iterate and print each line as follows:

In [1]: # read input file and print each line
with open('textfiles/mountains.txt') as book:
for line in book:

print(line.strip()) Variable name for your file

O, proudly rise the monarchs of our mow. '~ land,

With their kingly forest robes, to the sky,

Where Alma Mater dwelleth with her chosen bar Path to file on computer as a string
And the peaceful river floweth gently by.

The mountains! The mountains! We greet them with a song,
Whose echoes rebounding their woodland heights along,
Shall mingle with anthems that winds and fountains sing,
Till hill and valley gaily gaily ring.

Common File Type: CSVs

A CSV (Comma Separated Values) file is a specific type of plain text file
that stores "“tabular” data

Fach row of a table is a line in the text file, with each column on the row
separated by commas

This format is a common import and export format for spreadsheets and
databases

Name Age CSV form:
Harry 14 Name, Age
Harry, 14

Hermoine 14 -Iermoine, 14

Dumbledore 60 Dumbledore, 60

Working with C5Vs

- Since CSVs are just text files, we can process them in the same way

+ Might require additional post-processing/splitting using string methods

In [2]: filename = 'csv/classnames.csv'
with open(filename) as roster:
for line in roster:
print(line.strip())

Aleman-Valencia,Karla,kal4
Batsaikhan,Munguldei,mb34
Berger ,Marcello W.,mwb3
Bertolet,Jeremy S.,jsb7
Bhaskar,Monika A.,mabl3
Blair,Maycie C.,mcbl2
Brown,Courtney A.,cabl0
Christ,Alexander M.,amcll
Gonzalez,Gabriela M.,gmg7
Herman,Adelaide A.,aahé6
Hu,Jess, jhh3
Huang,Will,wh4
Jain,Divij,dj4
Kirtane,Jahnavi N., jnkl
Kluev,Varya A.,vakl
Klugman,Pat T.,ptk2

Knight Garcia I,Grace P.,gpkl

lastname, firstname, unix

Useful String and List Methods in File Reading

- Now that we know how to read files, we can use our favorite list and string

methods to work with the data
Lline.strip(): Remove any leading/trailing white space or‘\n”
Lline.split(‘,’): Separate a comma-separated sequence of words

" 'Ljoin(line.split(',"')): Create asingle “big” string with
words separated by spaces instead of commas

- myList.extend(): Create lists of words while iterating over the file
- myList.count(ele): Countthe occurrence of various elements

...and so on!

Data Analysis

- Some examples (more on Jupyter!)

In [4]: # if we want to create one big list of the words, we can accumulate
in a list using the extend() method
wordList = []
with open('textfiles/mountains.txt') as book:
for line in book:
wordList.extend(line.strip().split())

—

split() returns a list

In [6]: wordList

Out[é6]: ['O,"',
'proudly’,
'rise',
'the',
'monarchs’',
'of ',
'our',
'mountain’,

In [7]: len(wordList)

Out[7]: 133

In [5]: # number of times a word ('mountains!') is in the song?
wordList.count('mountains! ')

Out[5]: 4

Data Analysis w/ CSVs

Convert our last, first, unix CSV (snippet shown below) into a list of names

Aleman-Valencia,Karla,kal4
Batsaikhan,Munguldei,mb34 ,
Berger,Marcello W.,mwb3 Iastnanﬁe,ﬂrstnanwe,urnx

Bertolet,Jeremy S.,jsb7

In [8]: students = [] # initialize empty list
filename = "csv/classNames.csv"
with open(filename) as roster:
for line in roster:

fullName = line.strip().split(',")
firstName = fullName[1l]
lastName = fullName[O0]
print(firstName, lastName)
students.append(firstName + ' ' + lastName)

In [9]: students " string parsing to find first and last names;
then append string to list

Out[9]: ['Karla Aleman-Valencia',
'Munguldei Batsaikhan',
'Marcello W. Berger',
'Jeremy S. Bertolet',
'Monika A. Bhaskar',
'Maycie C. Blair',
'Courtney A. Brown',
'Alexander M. Christ',
'Gabriela M. Gonzalez',
'Adelaide A. Herman',
'"Jess Hu',

Final result: a list of strings

List Patterns: Map & Filter

When working with files, it iIs common to store data in lists
- When processing lists, there are common patterns that appear

Mapping: Iterate over a list and return a new list that results from
performing an operation on each element of a given sequence (list)

+ E.g, take a list of integers numL1st and return a new list which
contains the square of each number in numL1st

Filtering: lterate over a list and return a new list that results from
keeping only those elements of the list that satisfy some condition

E.o., take a list of integers nUML 1St and return a new list which
contains only the even numbers in numL1st

Python allows us to implement these patterns succinctly using list
comprehensions

List Comprehensions

Mapping List Comprehension (perform operation on each element)

newList = [expression for item in sequence]

Filtering List Comprehension (only keep some elements)

newList = [item for item in sequence if 1

Important points:

List comprehensions always start with an expression (even a variable
name like “item” Is an expression!)

* VWe never use append() in list comprehensions

* We can combine mapping and filtering into a single list comprehension:

newList = [expression for item in sequence 1f 1

Dissecting List Comprehensions

newList = [expression for item in sequence 1if

result = []

Task: Extract even numbers (for n in range (10):)
from a range and create a [(if n%2 == 0:)

list of their squares. result.append((n**2))

Using a list
comprehension:

'

G:'or n in‘range(IO)Xif n$2 == 0]

result = [@**2

expression item sequence

All list comprehensions can be rewritten using a for loop!

Using List Comprehensions

List comprehensions are often convenient when working with files

Recall our list of student names from before

In [9]: students

Out[9]: ['Karla Aleman-Valencia',
'"Munguldei Batsaikhan',
'Marcello W. Berger',

Example: How can we find the list of student names that begin with a
vowel? (Hint: we'll use our isVowe L () function again from before)

|dea:
[terate over students (list of strings)

For each name in list, check If first letter is a vowel

If it 1s, add name to result list

Using List Comprehensions

List comprehensions are often convenient when working with files

Recall our list of student names from before
In [9]: students

Out[9]: ['Karla Aleman-Valencia',
'"Munguldei Batsaikhan',
'Marcello W. Berger',

Example: How can we find the list of student names that begin with a
vowel? (Hint: we'll use our isVowe L () function again from before)

In [21]: vowelNames = [name for name in students if isVowel(name[0])]
vowelNames

\ e
Out[21]: ['Alexander M. Chr. \\

'Adelaide A. Herm: EXPression item sequence
'Owen A. Kolean',
'Andrew W. Loftus',
'Abraham S. Park',
'Isabella G. Polanco',
'Alison Y. Zhang',
'Elissa J. Berger',
'Avery G. Freund',
'"Annie H. Gustafson',
'Oliver E. Hall',
'Eddie G. Loyd']

Lists of Lists!

We have already seen lists of strings

We can also have lists of lists (sometimes called a two-dimensional list)!

Often arise when using list comprehensions

Suppose we have a list of lists of strings called myL1st

word = myList[a] [b] (# word is a string)

a is iIndex into “outer” list (identifies which inner list we want)

b is index into “inner’” list (identifies which element within the inner list)

b
l

myList = [[‘cat’, "frog’]
[dog’|, ‘toad’]

‘cow’, ‘duck’.

myList[1] [@]7
ldog’
«—d

]

We Don't Talk About Brure Data Types

Python is a loosely typed programming language
- We don't explicitly declare data types of variables

But like Bruno, the creepy uncle in Encanto who lurks behind the
walls and predicts the future, data types are always there

It's iImportant to make sure we pay attention to what a function
expects, especially with lists and strings! (remember this in Lab 4)

Lists of lists of strings versus list of strings:

myList = [[‘cat’, "frog’']l, myList = [‘cat’, ’'frog’,
‘dog’, ‘toad’l], ‘dog’, ‘toad’,
:ICOWI’ lduckl:] ‘COW” lduckl]

myList[1] [@] is ‘dog’ myList[1] [@] is ‘f’

Data Analysis

« Suppose we want to create a list of lists of strings using our student data

In [9]:

In [13]:

In [14]:

Out[1l4]:

filename = 'csv/classnames.csv'

allStudents = []

with open(filename) as roster:
for student in roster:

allStudents.append(student.strip().split(',"))

now with a list comprehension
filename = 'csv/classnames.csv'
with open(filename) as roster:

allStudents = [student.strip().split(',') for student in roster]

allStudents # a list of lists of strings!

[['Aleman-Valencia', 'Karla', 'kal4'],
['Batsaikhan', 'Munguldei', 'mb34'],
['Berger', 'Marcello W.', 'mwb3'],

['Bertolet', 'Jeremy S.', 'jsb7'],

['Bhaskar', 'Monika A.', 'mabl3'],
['Blair', 'Maycie C.', 'mcbl2'],
['Brown', 'Courtney A.', 'cabl0'],
['Christ', 'Alexander M.', 'amcll'],
['Gonzalez', 'Gabriela M.', 'gmg7'],
['Herman', 'Adelaide A.', 'aah6'],
["HU -, dJess , 1hh3],

7 simpler with list comprehension

list of lists of strings

More Examples!

Let's write some functions to answer questions about student names

Student fun facts! :-)

