
CS 134:
Files & List Comprehensions

Announcements & Logistics
• Homework 4 due next Mon at 11 pm

• Lab 4 posted today
• Two week lab!
• Automated feedback returned after Part 1 (due next week at usual time)

• You can fix your mistakes!
• We’ll grade everything after you submit Part 2 on second week
• Gain experience with lists, strings, file reading, lists of lists

Do You Have Any Questions?

Last Time
• Learned about adding items to lists using +, append(), and extend()

• Began thinking about side effects of mutability in lists
• Summarized important string and list methods and operations (so far)

• Sequence operators and functions
• String methods
• List methods

• Looked at ranges as an easy way to generate numerical sequences

Today’s Plan
• Discuss file reading using lists and strings

• Learn about list comprehensions as a way to simplify list
accumulations

• Introduce lists of lists (aka 2D lists)

Reading Data from Files

Working with Files in Python
• File I/O is a very common and important operation

• open(filename, mode) is a built-in Python function for working with files

• filename is a path to a file as a string

• mode is a string where

• 'r' - open for reading (default)

• 'w' - open for writing (will overwrite previous contents)

• 'a' - open for appending (will not overwrite previous contents)
• Whenever you open a file, you must also close it to avoid memory leaks

• We will use the with open … as code block, which keeps the file open
within it, and automatically closes the file after existing the block

• We can iterate over the lines of a text file just as we iterated over strings and
lists in previous lectures

Opening Files: with … as

with open(filename) as inputFile:

do something with file

Note. (syntax) Indentation defines the body of the
with block where the file is open

Path to file on computer as a string

Variable name for your file

Iterating over Lines in a File
• Within a with open(filename) as inputFile: block, we can

iterate over the lines in the file just as we would iterate over any sequence
such as lists, strings, or ranges

• The end of a line in the text file is determined by the special newline
character '\n’

• Example: We have a text file mountains.txt within a directory
textfiles, so we can iterate and print each line as follows:

Path to file on computer as a string

Variable name for your file

Common File Type: CSVs
• A CSV (Comma Separated Values) file is a specific type of plain text file

that stores “tabular” data
• Each row of a table is a line in the text file, with each column on the row

separated by commas
• This format is a common import and export format for spreadsheets and

databases

CSV form:
Name,Age
Harry,14
Hermoine,14
Dumbledore,60

Working with CSVs
• Since CSVs are just text files, we can process them in the same way
• Might require additional post-processing/splitting using string methods

lastname, firstname, unix

Useful String and List Methods in File Reading

• Now that we know how to read files, we can use our favorite list and string
methods to work with the data

• line.strip(): Remove any leading/trailing white space or “\n”

• line.split(‘,’): Separate a comma-separated sequence of words

• ' '.join(line.split(',')): Create a single “big” string with
words separated by spaces instead of commas

• myList.extend(): Create lists of words while iterating over the file

• myList.count(ele): Count the occurrence of various elements

• …and so on!

Data Analysis
• Some examples (more on Jupyter!)

split() returns a list

Data Analysis w/ CSVs
• Convert our last, first, unix CSV (snippet shown below) into a list of names

lastname, firstname, unix

string parsing to find first and last names;
then append string to list

Final result: a list of strings

List Patterns: Map & Filter
• When working with files, it is common to store data in lists

• When processing lists, there are common patterns that appear

• Mapping: Iterate over a list and return a new list that results from
performing an operation on each element of a given sequence (list)

• E.g., take a list of integers numList and return a new list which
contains the square of each number in numList

• Filtering: Iterate over a list and return a new list that results from
keeping only those elements of the list that satisfy some condition

• E.g., take a list of integers numList and return a new list which
contains only the even numbers in numList

• Python allows us to implement these patterns succinctly using list
comprehensions

List Comprehensions

• Important points:
• List comprehensions always start with an expression (even a variable

name like “item” is an expression!)
• We never use append() in list comprehensions
• We can combine mapping and filtering into a single list comprehension:

Mapping List Comprehension (perform operation on each element)

newList = [expression for item in sequence]

Filtering List Comprehension (only keep some elements)

newList = [item for item in sequence if conditional]

newList = [expression for item in sequence if conditional]

Dissecting List Comprehensions

Task: Extract even numbers
from a range and create a

list of their squares.

Using a list
comprehension:

newList = [expression for item in sequence if conditional]

expression item sequence conditional

All list comprehensions can be rewritten using a for loop!

Using List Comprehensions
• List comprehensions are often convenient when working with files
• Recall our list of student names from before

• Example: How can we find the list of student names that begin with a
vowel? (Hint: we’ll use our isVowel() function again from before)

• Idea:
• Iterate over students (list of strings)
• For each name in list, check if first letter is a vowel
• If it is, add name to result list

Using List Comprehensions
• List comprehensions are often convenient when working with files
• Recall our list of student names from before

• Example: How can we find the list of student names that begin with a
vowel? (Hint: we’ll use our isVowel() function again from before)

expression item sequence conditional

Lists of Lists!
• We have already seen lists of strings
• We can also have lists of lists (sometimes called a two-dimensional list)!
• Often arise when using list comprehensions

• Suppose we have a list of lists of strings called myList
• word = myList[a][b] (# word is a string)

• a is index into “outer” list (identifies which inner list we want)

• b is index into “inner” list (identifies which element within the inner list)

myList = [[‘cat’, ’frog’],
 [‘dog’, ‘toad’],
 [‘cow’, ‘duck’]]

a

b
myList[1][0]?

‘dog’

We Don’t Talk About Bruno Data Types

• Python is a loosely typed programming language
• We don’t explicitly declare data types of variables
• But like Bruno, the creepy uncle in Encanto who lurks behind the

walls and predicts the future, data types are always there
• It’s important to make sure we pay attention to what a function

expects, especially with lists and strings! (remember this in Lab 4)
• Lists of lists of strings versus list of strings:

myList = [[‘cat’, ’frog’],
 [‘dog’, ‘toad’],
 [‘cow’, ‘duck’]]

myList[1][0] is ‘dog’

myList = [‘cat’, ’frog’,
 ‘dog’, ‘toad’,
 ‘cow’, ‘duck’]

myList[1][0] is ‘f’

Data Analysis
• Suppose we want to create a list of lists of strings using our student data

list of lists of strings

simpler with list comprehension

More Examples!
• Let’s write some functions to answer questions about student names
• Student fun facts! :-)

