CS 34
Strings, Lists, and Ranges

Announcements & Logistics

Lab 3 is due tonight/tomorrow at | Ipm
HW 4 will be posted later today
If you are having problems with anything, please come see us during office hours

Always refer to course calendar for updated hours!

Do You Have Any Questions?

Last [Ime

Reviewed rterating over sequences with for loops

Used accumulation variables to collect "items" from sequences,
e.g., vowel sequences, counters, etc

Looked at nested for loops
Introduced new sequence: lists

Learned how to index, slice, concatenate, iterate over lists just like
we did with strings

Example: wordStartEnd

Recap: wordStartEnd

- Write a function that iterates over a given list of words wordList,

and returns a (new) list containing all the words in wordList that
start and end with the same letter (ignoring case).

def wordStartEnd(wordList):

Takes a list of words and returns a list of words in it
that start and end with the same letter'''

initialize accumulation variable (of type list)
result = []

for word in wordList: # iterate over 1list

#check for empty strings before indexing
if len(word) != 0:
if word[0].lower() == word[-1].lower():
result += [word] # concatenate to resulting list
return result # notice the indentation of return

Recap: wordStartEnd

Write a function that iterates over a given list of words wordList,

and returns a (new) list containing all the words in wordList that
start and end with the same letter (ignoring case).

def wordStartEnd(wordList): Accumulating in a list.

'''Takes a list of words and returns a list ¢ Always initialize our
that start and end with the same letter''' accumulation variable before
initialize accumulation variable (of type . we enter Ioop.
result = [] — - f : , , -

for word in wordList: # iterate over 1list

#check for empty strings before indexing
if len(word) != 0:
if word[0].lower() == word[l].lower():
result += [word] # veswe—e— . .
return result # notice the indentation of r¢ List concatenation

Joday's Plan

Review sequence operations
Review list and string operations (so farl)

Discuss convenient method and functions for working with strings
and lists (we'll continue to expand on this in upcoming lectures)

Investigate list mutability versus string immutability

Introduce range data types and ways to iterate over numerical
sequences

Review: Sequence Operations

Operation Result

X in seq True if an item of seq is equal to x
X not in seq False if an item of seq 1s equal to x
seql + seq2 The concatenation of seql and seq2
seqg*n, n*seq n copies of seq concatenated
seq[i] i’th item of seq, where origin is 0
seq[i:7] slice of seq from i to |
seq[i:j:k] slice of seq from i to j with step k
len(seq) length of seq

min(seq) smallest item of seq

max(seq) largest item of seq

All of these operators work on both strings and lists!

Sequence Operations with Strings

a" in "aeiou" # in operator

"b" not in "aeiou" # not in operator

True

"CS" + "134" # concatenation with +

'CS134'

"abc" * 3 # * operator
"abcabcabc'’

myString = "abc"

myString[l] # indexing with []

lbl

myString[l:2] # slicing with [:]

Ibl

using negative step in slicing
myString[::-1]

cba

len(myString) # length function

3

min function (finds smallest character)
min(myString)

a

max function (finds largest character)
max (myString)

C

Sequence Operations with Lists

1 in [1, 2, 3] # in operator myList[1:2] # slicing with [:]
True [2]
l not in [1, 2, 3] # not in operator # slicing with negative step
myList[::-1
False ! :)
[3, 2, 1]
[1] + [2] # concatenation with +
len(myList) # len function
[1, 2]
3
[1, 2] * 3 # * operator
[l 2 09 1 o) min(myList) # min function
1

myList = [1, 2, 3]
myList[l] # indexing with []

max(myList) # max function
2

3

List Operations, Methods,
and runctions

list() Function

List () function, when given another sequence (like a string), returns a list of
elements In the sequence

In [32]: word = "Computer Science!"

In [33]: list(word) # can turn a string into a list of its characters

Out[33]: [

Ko decmo s o

-0 QB0 FAQ®

— -~ - - -~ -~ - - - - - - - - -~ -

In [30]: list(str(3.14159265))

Out[3o0j: '3', '.', '1', '4', '1', 's5"', '9', '2', '6', '5']

Moditying Lists

Lists are mutable data structures
* This means we can update them (delete things from them, add things to them, etc.)
List concatenation (using +) creates a new list and does not modify any existing list

Important point: Concatenating to a list returns a new list!

- We can also append to or extend a list, which modifies the existing list
- The list method myList.append(item) modifies the list myList by
adding 1tem to it at the end

The list method myList.extend(otherList) modifies the list myList by
adding all elements from otherList to myList at the end

Often more efficient to append/extend rather than concatenate

But we have to be very careful when modifying the list

Important point: Appending to or extending a list modifies the existing list!

Adding elements to a List

- Here are a few examples that show how to use the list .append()

method vs + operator to add items to the end of an existing list
In [8]: numList = [1, 2, 3, 4, 5]

In [9]: numList + [6] —_— list concatenation

Out[9]1: [1, 2, 3, 4, 5, 6] e this is a new list!

In [10]: numList # numList has not changed

Out[1l0]: 11, 2, 3, 4, 5]

In [12]: numList.append(6) . |[ist append, notice dot notation

In [14]: numList # numList has been updated to include 6

Out[1l4]: 1, 2, 3, 4, 5, 6]

More Useful List Methods

- myList.extend(itemList): appends all items in itemList to the end of
myL1ist (modifying myL1st)

- myList.count(item): counts and returns the number (int) of times item
appears in myList

- myList.index(item): returns the first index (int) of item in myList if it is

present, else throws an error

In [39]: myList = [1, 7, 3, 4, 5] In [38]: myList.index(10)

In [40]: myList.extend([6, 4]) ValueError
<ipython-input-38-14d2e386c720:

In [41]: myList ———=> 1 myList.index(10)

out[41]: [1, 7, 3, 4, 5, 6, 4] ValueError: 10 is not in list

In [42]: myList.count(4)

Out[42]: 2

In [43]: myList.index(3)

Out[43]: 2

String Operations, Methods,
and Functions

str() function

str() function allows us to convert other data types to strings

In [1]: myList = [2, 3, 4]

In [2]: str(myList)
out [2] . . 2 3 4 1 — . . o .
(2, 3, 2] Converting a list to a string in

this way is somewhat limiting
In [3]: str(1l)

Out[3]: '1'

In [4]: str(2.3)

Ooutf[4]: '2.3'

List to Strings: join()

- Given a list of strings,the . join () string method, when applied to a
string separator, concatenates the strings together with the string
separator between them

- .join() requires a list to be passed as a parameter, and elements
of the list must be strings

In [11]: wordList = ['Everybody', 'is', 'looking', 'forward', 'to', 'the', 'weekend']

In [12]: '*'.join(wordList) “*x’ is a string, wordL1st is a list that is passed as a parameter

Out[1l2]: 'Everybody*is*looking*forward*to*the*weekend' ..)
this is a string!

In [13]: ' '.join(wordList)
Out[13]: 'Everybody is looking forward to the weekend'
In [14]: ' '.join(wordList)

Out[1l4]: 'Everybody is looking forward to the weekend'

String to Lists: split()

- .split() isa string method that splits strings at “spaces’(the
default separator) and returns a list of (sub)strings

- Can optionally specify other delimiters (or separators) as well

In [5]: phrase = "What a lovely day" —_— Phl"ase is a string

In [6]: phrase.split()

Out[6]: ['What', 'a’, 'lovely', 'day'] - .split() returns a list of strings

In [7]: newPhrase = "What a *lovely* day!" # multiple spaces or punctuations dont matter

In [8]: newPhrase.split()

Out[8]: ['What', 'a', '*lovely*', 'day!']
In [9]: commaSepSpells = "Impervius, Portus, Lumos, Reducio, Protego" #comma separated strings
In [10]: commaSepSpells.split(',') e use, as separator

Out[10]: ['Impervius', ' Portus', ' Lumos', ' Reducio', ' Protego']

Remove whitespace w/ strip()

*+ The .strip() string method strips away whitespace and (sometimes
hidden) new line (\n) characters from the beginning and end of strings
and returns a new string

In [1]: word = " ** Snowy Winters **

In [2]: word.strip()

Out[2]: '** Snowy Winters **'

In [8]: "\nHello World\n".strip()

Out[8]: 'Hello World'

More Useful String Methods!

- word. find(s)
- Return the first (or last) position (index) of string s in word. Returns -1 if not found.
- char.isspace()

+ Returns True if char is not empty and char is composed of white space (or
lowercase, uppercase, alphabetic letters, digits, or either letters or digits).

+ Canalso do: islower(), isupper(), isalpha(), isdigit(),
isalnum().

- word.count(s)
» Returns the number of (non-overlapping) occurrences of s in word
- word. index(s)

 Return the lowest index in word where substring s is found. Returns ValueError if
not found.

- replace(old, new)
 Return a string with all occurrences of substring old replaced by new.

» Many, many more: see pydoc3 str

String Methods in Action

word = 'Williams College' Returned value
word.split() ['Williams', 'College']

Notice how methods "WILLIAMS COLLEGE'

word.upper)
pper () use dot notation

word. lower() 'williams college'’
word.replace('iams', 'eslley') 'Willeslley College’
word.replace('tent', 'eselley') 'Williams College'
newWord = ' Spacey College '

newWord.strip() 'Spacey College'

myList = ['Williams', 'College']

'.join(myList) 'Williams College'

Important note: Strings are immutable. None of these operations
change/affect the original string. They all return a new string!

Summarizing Mutability in Strings vs Lists

Strings are immutable

Once you create a string, it cannot be changed!

All operations that we have seen on strings return a new string and

do not modify the original string

Lists are mutable

Lists are mutable (or changeable) sequences

You can concatenate rtems to a list using +, but this does not change

the list

You can append rtems using append() method, and this does change
the list

Moving on: Ranges (another sequencel)

* Python provides an easy way to iterate over numerical sequences using
ranges, another sequence data type

* When the range() function is given two integer arguments, it returns a

range object of all integers starting at the first and up 1o, but not including,
the second; if the first integer is O, it may be omitted.

* o see the values included in the range, we can pass our range to the
11st() function which returns a list of them

In [1]:

Out[1l]:

In [2]:

Out[2]:

range(0,10) In [3]: list(range(0, 10))

range(0, 10) Out[(3]: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

type(range(0, 10)) In [4]: list(range(10))

range Out[4]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Moving on: Ranges (another sequencel)

* Python provides an easy way to iterate over numerical sequences using
ranges, another sequence data type

* When the range() function is given two integer arguments, it returns a

range object of all integers starting at the first and up 1o, but not including,
the second; if the first integer is O, it may be omitted.

* o see the values included in the range, we can pass our range to the
list(> ~ o list of them

In [1]:

Oout[1l]:

In [2]:

Out[2]:

A range is a type of
sequence in Python (like
string and list)

To see elements in range, pass
range to list() function

range(0,10) In [3]: list(range(0, 10))

Out[3]: [0, 1, 2, 3 First argument omitted,

range(0, 10) E
erauits to

type(range(0, 10)) In [4]: list(range(10))

range Out[4]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Loops and Ranges to Print Patterns

Sometimes we might use a for loop, not to iterate over a sequence, but just
to repeat a task over and over. The following loops print a pattern to the
screen. (Look closely at the indentation!)

what does this print? # what does this print?

for i in range(5): for i in range(5):
print ('S’ * 1) print('S$' * 1)

for j in range(5): for j in range(i):
print('*" * 3J) print('*' * 1)

What are the values of i
and j??7?

terating Over Ranges

what does this print? # what does this print?

for i in range(5): for i in range(5):
print('S$' * 1) print('S$S' * 1)

for j in range(5): for j in range(i):

print('*' * 3J) print('*' * 1)

terating Over Ranges

what does this print? # what does this print?
for i in range(5): for i in range(5):
print('S$' * 1) print('S$S' * 1)
for j in range(5): for j in range(i):
print('*' * 3J) print('*' * 1)
1=0 1 =0
$ i=1 $ i=1 i, not j!
S 1=2 * j =20
$$$ L= $$ i-2
$$$$ b= *) =0
i=0 * % j=1
* j=1 $$S i=3.
* % j =2 * % %] =20
* % % j =3 * % % j =1
* % % % j =4 * % % j =2
$$SS 1=4
* % k% J =0
* % % % j =1
* % % % j =2
* % %k % j =3

