
CS 134: 
Strings, Lists, and Ranges

Announcements & Logistics
• Lab 3 is due tonight/tomorrow at 11pm

• HW 4 will be posted later today

• If you are having problems with anything, please come see us during office hours

• Always refer to course calendar for updated hours!

Do You Have Any Questions?

Last Time
• Reviewed iterating over sequences with for loops

• Used accumulation variables to collect "items" from sequences,
e.g., vowel sequences, counters, etc

• Looked at nested for loops

• Introduced new sequence: lists
• Learned how to index, slice, concatenate, iterate over lists just like

we did with strings

• Example: wordStartEnd

Recap: wordStartEnd
• Write a function that iterates over a given list of words wordList,

and returns a (new) list containing all the words in wordList that
start and end with the same letter (ignoring case). 
 

Recap: wordStartEnd
• Write a function that iterates over a given list of words wordList,

and returns a (new) list containing all the words in wordList that
start and end with the same letter (ignoring case). 
 

Accumulating in a list.

Always initialize our

accumulation variable before
we enter loop.

List concatenation

Today’s Plan
• Review sequence operations

• Review list and string operations (so far!)

• Discuss convenient method and functions for working with strings

and lists (we’ll continue to expand on this in upcoming lectures)

• Investigate list mutability versus string immutability

• Introduce range data types and ways to iterate over numerical
sequences

Review: Sequence Operations

All of these operators work on both strings and lists!

Sequence Operations with Strings

Sequence Operations with Lists

List Operations, Methods,
and Functions

list() Function
• list() function, when given another sequence (like a string), returns a list of

elements in the sequence

Modifying Lists
• Lists are mutable data structures

• This means we can update them (delete things from them, add things to them, etc.)

• List concatenation (using +) creates a new list and does not modify any existing list

• Important point: Concatenating to a list returns a new list!

• We can also append to or extend a list, which modifies the existing list

• The list method myList.append(item) modifies the list myList by

adding item to it at the end

• The list method myList.extend(otherList) modifies the list myList by

adding all elements from otherList to myList at the end

• Often more efficient to append/extend rather than concatenate

• But we have to be very careful when modifying the list

• Important point: Appending to or extending a list modifies the existing list!

Adding elements to a List
• Here are a few examples that show how to use the list .append()

method vs + operator to add items to the end of an existing list

list concatenation

list append, notice dot notation

this is a new list!

More Useful List Methods
• myList.extend(itemList): appends all items in itemList to the end of
myList (modifying myList)

• myList.count(item): counts and returns the number (int) of times item
appears in myList

• myList.index(item): returns the first index (int) of item in myList if it is
present, else throws an error

String Operations, Methods,
and Functions

str() function
• str() function allows us to convert other data types to strings

Converting a list to a string in
this way is somewhat limiting

List to Strings: join()
• Given a list of strings, the .join() string method, when applied to a

string separator, concatenates the strings together with the string
separator between them

• .join() requires a list to be passed as a parameter, and elements
of the list must be strings

‘*’ is a string, wordList is a list that is passed as a parameter

this is a string!

String to Lists: split()
• .split() is a string method that splits strings at “spaces”(the

default separator) and returns a list of (sub)strings

• Can optionally specify other delimiters (or separators) as well

phrase is a string

.split() returns a list of strings

use , as separator

Remove whitespace w/ strip()
• The .strip() string method strips away whitespace and (sometimes

hidden) new line (\n) characters from the beginning and end of strings
and returns a new string

More Useful String Methods!

\

• word.find(s)

• Return the first (or last) position (index) of string s in word. Returns -1 if not found.

• char.isspace()
• Returns True if char is not empty and char is composed of white space (or

lowercase, uppercase, alphabetic letters, digits, or either letters or digits).

• Can also do: islower(), isupper(), isalpha(), isdigit(),
isalnum().

• word.count(s)

• Returns the number of (non-overlapping) occurrences of s in word

• word.index(s)

• Return the lowest index in word where substring s is found. Returns ValueError if

not found.

• replace(old, new)

• Return a string with all occurrences of substring old replaced by new.

• Many, many more: see pydoc3 str

String Methods in Action

\

word = 'Williams College'

word.split() ['Williams','College']

word.upper() 'WILLIAMS COLLEGE'

word.lower() 'williams college'

word.replace('iams', 'eslley') 'Willeslley College'

word.replace('tent', 'eselley') 'Williams College'

newWord = ' Spacey College '

newWord.strip() 'Spacey College'

myList = ['Williams', 'College']

' '.join(myList) 'Williams College'

Important note: Strings are immutable. None of these operations
change/affect the original string. They all return a new string!

Returned	value

Notice how methods
use dot notation

Summarizing Mutability in Strings vs Lists

• Once you create a string, it cannot be changed!

• All operations that we have seen on strings return a new string and
do not modify the original string 
 

• Lists are mutable (or changeable) sequences

• You can concatenate items to a list using +, but this does not change
the list

• You can append items using append() method, and this does change
the list

Lists are mutable

Strings are immutable

Moving on: Ranges (another sequence!)
• Python provides an easy way to iterate over numerical sequences using

ranges, another sequence data type

• When the range() function is given two integer arguments, it returns a
range object of all integers starting at the first and up to, but not including,
the second; if the first integer is 0, it may be omitted.

• To see the values included in the range, we can pass our range to the
list() function which returns a list of them

Moving on: Ranges (another sequence!)
• Python provides an easy way to iterate over numerical sequences using

ranges, another sequence data type

• When the range() function is given two integer arguments, it returns a
range object of all integers starting at the first and up to, but not including,
the second; if the first integer is 0, it may be omitted.

• To see the values included in the range, we can pass our range to the
list() function which returns a list of them

A range is a type of
sequence in Python (like

string and list)

To see elements in range, pass
range to list() function

First argument omitted,
defaults to 0

• Sometimes we might use a for loop, not to iterate over a sequence, but just
to repeat a task over and over. The following loops print a pattern to the
screen. (Look closely at the indentation!)

•  

Loops and Ranges to Print Patterns

What are the values of i
and j???

Iterating Over Ranges

Iterating Over Ranges

i = 0
i = 1
i = 2
i = 3
i = 4
j = 0
j = 1
j = 2
j = 3
j = 4

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

i, not j!

