CS|34:
Conditionals and Modules

Announcements & Logistics

Homework 2 is due tonight | | pm
Lab 2 dueWed | Ipm /Thur | Ipm

You can work on lab machines any time
Make sure to keep your work consistent with what is on evolene

Best practice: Always push to evolene when done with a work session
It restarting work on a different machine:

It working on a machine on this lab for the |st time: clone the
repository just like you would when starting

Otherwise, make sure to git pull first

No class on Friday (Winter Carnival)

Do You Have Any Questions?

Last [Ime

Wrapped up functions
Discussed return statements and variable scope
Started learning about conditionals

Boolean data type

Making decisions Iin Python using if else statements

Joday's Plan

Look at more complex decisions in Python
Boolean expressions with and, or, not
Choosing between many different options in our code

If elif else chained conditionals

- We are going to cover a lot of material in the next 3 lectures

Make sure you are keeping up and getting help if needed!

Python Conditionals (1T Statements)

1f <boolean expression>:

statementl Tnm‘//g/I// ___ False
(o]o} _express:.on

statement’?

\ 4 \ A 4 \
statement3 statementl statement4 “olse”

!) i v ~ clause

else: statement2 > then statement>
clause _/
statement4 |
statement3

statement5 /

— N

Note: (syntax)

e) f Note: else
ndentation an : o . - .
. clause is If it is raining, then bring an umbrella.
colon after if optional! .
and else Else, bring your sunglasses.

Conditional Statements: If Else

- Consider the following functions that check if a number is even or odd

+ (More examples In today's notebook)

W

N O »

C

N -

W

>

def printEven(num):

def

"""Takes a number as input, prints Even if
it is even, else prints Odd"""
if num $ 2 == 0: # if even
print ("Even")
else:
print("0dd")

isEven(num) :
"""Takes a number as input, returns True if
it is even, else returns False"""

[+

return num % 2 ==

For two expressions eXpl and exp2

Logical Operators

Logical operators and, or, not are used to combine Boolean values

- not eXpl (!in other languages) returns the opposite of the truth value for exp1l

- expl and exp2 (&& in other languages) evaluates to True iff both expl and

eXxp2 evaluate to True

- expl or exp2 (|| in other languages) evaluates to True iff either exXpl or exp2

evaluate to True

Truth Table for or Truth Table for and
expl exp2 expl 0 exp2 ||expl exp2 expl 11 exp2
True True True ||True True True
True False True ||True False False
False True True ||False True False
False False False || False False False

Nested Conditionals

- Sometimes, we may encounter a more complicated conditional

structure with more than 2 options

- Example:Write a function that takes a temp value in Fahrenheit
- If temp Is above 80, print "It Is a hot one out there."

- If temp is between 60 and 80, print "Nice day out, enjoy!"
« If temp is below 60, print "Chilly day, don't forget a jacket."
- Notice that temp can only be in one of those multiple ranges

- If we find that temp Is greater than 80, no need to check the rest!

Nested Conditionals

if booleanExpressionl:

statement 1

else:
it booleanExpression2:

statement 2

else:

statement 3

Attempt |: Chained Conditionals

- We can nest if-else statements (using indentation to distinguish between

matching if-else blocks)

- However, this can quickly become unnecessarily complex (and hard to read)

def weatherl(temp):
if temp > 80:
print ("It is a hot one out there.")
else:
if temp >= 60:
print ("Nice day out, enjoy!")
else:
if temp >= 40:
print("Chilly day, wear a sweater.")
else:
print("Its freezing out, bring a winter jacket!")

Attempt 2: Chained Ifs

- What if we used a bunch of if statements (w/o else) one after the other

to solve this problem!?

- What are the advantages/disadvantages of this approach?

def weather2(temp):
if temp > 80:
print ("It is a hot one out there.")
if temp >= 60 and temp <= 80:
print("Nice day out, enjoy!")
if temp <60 and temp >= 40:
print("Chilly day, wear a sweater")
if temp < 40:
print("Its freezing out, bring a winter jacket!")

if Elif Else Statements

- Fortunately, Python allows us a simpler way to choose one out of many

options by chaining conditionals

if booleanExpressioni: A better approach that avoids too
many indented blocks and improves
statement 1 code readability

elif booleanExpression2:

statement 2

else: Can have any number of e L1

statement 3 conditions, but only one
(optional) e lse (at the end)

Attempt 3: Chained Condrtionals

- Note that we can chain together any number of elif blocks

- The else block is optional

def weather3(temp):
if temp > 80:
print ("It is a hot one out there.")
elif temp >= 60:
print ("Nice day out, enjoy!")
elif temp >= 40:

print("Chilly day, wear a sweater.")
else:

print("Its freezing out, bring a winter jacket!")

JTakeaway of Condrtionals

Chained conditionals can avoid having to nest conditionals. Chaining

reduces complexity and improves readability

Since only one of the branches in a chained 1f, elif, else
conditionals evaluates to True, using them avoids unnecessary checks

incurred by chaining if statements one after the other

Exercise: LleapYear Function

» Let us write a function LleapYear that takes a year as input, and
returns True if it is a leap year, else returns False

- When is a given year a leap year!

- "Every year that is exactly divisible by four is a leap year, except for years
that are exactly divisible by 00, but these centurial years are leap years,

if they are exactly divisible by 400."

How do we structure this logic
using booleans and condrtionals!

Exercise: LleapYear Function

» Let us write a function LleapYear that takes a year as input, and
returns True if it is a leap year, else returns False

- When is a given year a leap year!

- "Every year that is exactly divisible by four is a leap year, except for years
that are exactly divisible by 00, but these centurial years are leap years,

if they are exactly divisible by 400."
- If year is not divisible by 4: Is not a leap year
- Else (divisible by 4) and if not divisible by 100: Is a leap year
- Else (divisible by 4 and by 100) and not divisible by 400: not a leap

year

Exercise: leapYear Function

def islLeap(year):
"""Takes a year (int) as input and returns
True if it 1s a leap year, else returns False"""
pass

Leap years between from 900 to 2060:

Not a leap year

m 1904 1908 1912 1916 1920 1924 1928 1932 1936
1940 1944 1948 1952 1956 1960 1964 1968 1972 1976
1980 1984 1988 Thetel” 1996 2000 2004 2008 2016 2020

m 2028 2032 2036 2040 2044 2048 2052 2056 2060

Next leap year

https://www.calendarbest/leap-years.html

—xercise: LeapYear Function

def islLeap(year):
"""Takes a year (int) as input and returns
True if it is a leap year, else returns False"""

if not divisible by 4 return False
if year % 4 != 0:
return False

1s divisible by 4 but not divisible by 100
elif year % 100 != 0:
return True

is divisible by 4 and divisible by 100
but is not divisible by 400
elif year % 400 != 0:

return False

1is divisible by 400 (and also 4, and 100)
return True

Moving On. ..

Modules and Scripts

+ A script is generally any piece of code saved in a file,e.g, leap.py
» Scripts are meant to be directly executed with: python3 leap.py

- A module is generally a collection of statements and definitions that are
meant to be imported and used by a different program

- Modules are used in interactive python when we import functions/code

* Python allows any program we write ina . pYy file to serve both as a
module and a script

- To provide a way to distinguish between these two modes of operation,
every module has a special variable called __name__

- Note: If a variable starts/ends with double ___ in Python, it's a special variable

Modules and Scripts

» Consider for example, the code we wrote in Lleap.py

« When leap. py file is directly run as a script then the special variable
called __name___ issettothestring " __main__"

* When we are importing the code as a module, the __name___
variable is set to to the name of the module Leap

- Why does this matter?

- We often want different behavior when the code is run as a script
vs when it's imported as a module

1f name == "' main '

- This is just an If statement with an equality Boolean expression:

» Checking whether the special variable __name___ is set to the
string ‘ __mailn__". Thatis, the code is being run as a script

- We can place code that we want to run when our module Is executed
as a script inside the 1f __name__ == “__main__":block

» This is usually testing code and we do not want it to run when we are
importing functions In interactive Python

Example: Script vs Module

print("__name__ is set to", __name__, "\n\n")

bash-3.2$% python3 name.py
__name__ 1is set to __main__

bash-3.2%$ python3
Python 3.9.7 (v3.9.7:1016ef3790, Aug 30 2021, 16:25:35)

[Clang 12.0.5 (clang-1205.0.22.11)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

>>> import name
__name__ 1s set to name

def islLeap(year):

| L | |
"""Takes a year (int) as input and returns .
True if it is a leap year, else returns False""" Scr‘lp't and Module

if year % 4 != o: * (Jeannie added this slide after
return False
lecture!)

elif year % 100 != 0:
return True

elif year % 400 '= 0:
return False

return True

year = int(input("Enter a year: "))

if islLeap(year):

print(year, "is a leap year!")
else:

print(year, "is not a leap year.")

Running leap as a Script and Module

(Jeannie added this slide after lecture!)

Running leap.py as a script (notice the code In the if block runs!)

bash-3.2$ python3 leap.py
Enter a year: 1900

1900 is not a leap year.
bash-3.2% python3 leap.py
Enter a year: 2040

2040 is a leap year!

Running leap.py as a module in interactive Python

bash-3.2%$ python3

Python 3.9.7 (v3.9.7:1016ef3790, Aug 30 2021, 16:25:35)

[Clang 12.0.5 (clang-1205.0.22.11)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> from leap import *

>>> isleap(1900)

False

>>> isleap(2040)

True

>>> exit()

Lab 2

Lab 2: Goals

In this lab, you will be writing a non-trivial Python script to compute the

current day of the week in Williamstown
High-level learning goals:
Defining and calling functions.
Using arithmetic operators in Python.
Testing your code in interactive Python.

Writing conditional (if else) statements to make decisions in your

code

How Computers Keep Track of Time

On Unix machines time is represented by the number of seconds,

starting from the beginning of Thursday, January |, 1970
The date is arbrtrary, but is called the Unix "epoch”

In Python we can access this value using the time module()

The time value is iIn UTC (current time in England)

While the value is a float, we only need the integer part for this lab

S python3

>>> from time import time
>>> time()
1612800680.9091752

Fisuring Out the Day of the Week

The time module gives us the total number of seconds since the Epoch

Our goal: Use this value to figure out what the current day of the week
is in England (for now, later we will deal with timezones)

Approach (break down the problem):
How many minutes have elapsed since the Epoch!?
How many hours! Days!?

Suppose the number of days divide evenly by 7.What day of the
week is it! What if they do not divide evenly?

How do we do this using arithmetic operations!

Hint: Think about our example involving numCo1ns from last week

UTCDay(timeval)

This function takes a floating point number as a parameter, timeval
timeval represents the UTC time in England
timeval is the total number of seconds since the Epoch

This function should return:

A number between 0-6, which is the day of the week
corresponding to timeval

Where O Is Sunday, | 1s Monday, .., 6 I1s Saturday

Interactively lesting Functions

Enter interactive Python by typing python3 at the Terminal
Import the function and any modules you need
>>> from day import UTCDay
>>> from time import time
Call your function and see if it returns the desired output
If you need to make changes to the code in day.py:
Quit out of interactive python session (Ctrl-D or exit())
Restart interactive Python; re-import modules before resuming testing

Hint: Can press up on keyboard to see previously typed commands In

interactive Python

Running as a Script

+ To run a program as a script:
+ type python3 (filename.py) in the Terminal

« This ensures that the code block within if __name__ == '__main__'

block Is executed

if name == " main ": # run as a script?
now = time() # UTC time
dayNumber = localDay(now, -4) # Eastern day of week number

dayName = dayOfWeek(dayNumber) # get day name
print("It's "+ dayName +"!") # print it out

+ Note:The code in this If block is not run in interactive Python

