
CS134:  
Conditionals and Modules

Announcements & Logistics
• Homework 2 is due tonight 11 pm

• Lab 2 due Wed 11pm / Thur 11pm

• You can work on lab machines any time

• Make sure to keep your work consistent with what is on evolene

• Best practice: Always push to evolene when done with a work session

• If restarting work on a different machine:

• If working on a machine on this lab for the 1st time: clone the
repository just like you would when starting

• Otherwise, make sure to git pull first

• No class on Friday (Winter Carnival)

Do You Have Any Questions?

Last Time
• Wrapped up functions

• Discussed return statements and variable scope

• Started learning about conditionals

• Boolean data type

• Making decisions in Python using if else statements

Today’s Plan
• Look at more complex decisions in Python

• Boolean expressions with and, or, not

• Choosing between many different options in our code

• If elif else chained conditionals

• We are going to cover a lot of material in the next 3 lectures

• Make sure you are keeping up and getting help if needed!

Python Conditionals (if Statements)
if <boolean expression>:

statement1

statement2

statement3

else:

 statement4

 statement5

If it is raining, then bring an umbrella.

Else, bring your sunglasses.

Note: (syntax)
Indentation and

colon after if
and else

Note: else
clause is
optional!

Conditional Statements: If Else
• Consider the following functions that check if a number is even or odd

• (More examples in today’s notebook)

Logical Operators
• Logical operators and, or, not are used to combine Boolean values

• For two expressions exp1 and exp2
• not exp1 (! in other languages) returns the opposite of the truth value for exp1
• exp1 and exp2 (&& in other languages) evaluates to True iff both exp1 and
exp2 evaluate to True

• exp1 or exp2 (|| in other languages) evaluates to True iff either exp1 or exp2
evaluate to True

Truth Table for or Truth Table for and

Nested Conditionals
• Sometimes, we may encounter a more complicated conditional

structure with more than 2 options

• Example: Write a function that takes a temp value in Fahrenheit

• If temp is above 80, print "It is a hot one out there."

• If temp is between 60 and 80, print "Nice day out, enjoy!"

• If temp is below 60, print "Chilly day, don’t forget a jacket."

• Notice that temp can only be in one of those multiple ranges

• If we find that temp is greater than 80, no need to check the rest!

Nested Conditionals
if booleanExpression1:

 statement 1

 ...

else:

 if booleanExpression2:

 statement 2

 ...

 else:

 statement 3

 ...

Attempt 1: Chained Conditionals
• We can nest if-else statements (using indentation to distinguish between

matching if-else blocks)

• However, this can quickly become unnecessarily complex (and hard to read)

Attempt 2: Chained Ifs
• What if we used a bunch of if statements (w/o else) one after the other

to solve this problem?

• What are the advantages/disadvantages of this approach?

If Elif Else Statements
• Fortunately, Python allows us a simpler way to choose one out of many

options by chaining conditionals

A better approach that avoids too
many indented blocks and improves

code readability

Can have any number of elif
conditions, but only one

(optional) else (at the end)

if booleanExpression1:

 statement 1

 ...

elif booleanExpression2:

 statement 2

 ...

else:

 statement 3

 ...

Attempt 3: Chained Conditionals
• Note that we can chain together any number of elif blocks

• The else block is optional

Takeaway of Conditionals
• Chained conditionals can avoid having to nest conditionals. Chaining

reduces complexity and improves readability

• Since only one of the branches in a chained if, elif, else
conditionals evaluates to True, using them avoids unnecessary checks
incurred by chaining if statements one after the other

Exercise: leapYear Function
• Let us write a function leapYear that takes a year as input, and

returns True if it is a leap year, else returns False

• When is a given year a leap year?

• "Every year that is exactly divisible by four is a leap year, except for years

that are exactly divisible by 100, but these centurial years are leap years,

if they are exactly divisible by 400."

How do we structure this logic
using booleans and conditionals?

Exercise: leapYear Function
• Let us write a function leapYear that takes a year as input, and

returns True if it is a leap year, else returns False

• When is a given year a leap year?

• "Every year that is exactly divisible by four is a leap year, except for years

that are exactly divisible by 100, but these centurial years are leap years,

if they are exactly divisible by 400."

• If year is not divisible by 4: is not a leap year

• Else (divisible by 4) and if not divisible by 100: is a leap year

• Else (divisible by 4 and by 100) and not divisible by 400: not a leap
year

https://www.calendar.best/leap-years.html

Exercise: leapYear Function

Leap years between from 1900 to 2060:
Not a leap year

Next leap year

Exercise: leapYear Function

Moving On…

Modules and Scripts
• A script is generally any piece of code saved in a file, e.g., leap.py

• Scripts are meant to be directly executed with: python3 leap.py

• A module is generally a collection of statements and definitions that are
meant to be imported and used by a different program

• Modules are used in interactive python when we import functions/code

• Python allows any program we write in a .py file to serve both as a
module and a script

• To provide a way to distinguish between these two modes of operation,
every module has a special variable called __name__

• Note: If a variable starts/ends with double __ in Python, it’s a special variable

Modules and Scripts
• Consider for example, the code we wrote in leap.py

• When leap.py file is directly run as a script then the special variable
called __name__ is set to the string "__main__"

• When we are importing the code as a module, the __name__
variable is set to to the name of the module leap

• Why does this matter?

• We often want different behavior when the code is run as a script
vs when it’s imported as a module

 if __name__ == '__main__'
• This is just an if statement with an equality Boolean expression:

• Checking whether the special variable __name__ is set to the
string ‘__main__’. That is, the code is being run as a script

• We can place code that we want to run when our module is executed
as a script inside the if __name__ == “__main__”: block

• This is usually testing code and we do not want it to run when we are
importing functions in interactive Python

Example: Script vs Module

Running leap as a
Script and Module

• (Jeannie added this slide after
lecture!)

Running leap as a Script and Module
• (Jeannie added this slide after lecture!)

• Running leap.py as a script (notice the code in the if block runs!)

• Running leap.py as a module in interactive Python

Lab 2

Lab 2: Goals
• In this lab, you will be writing a non-trivial Python script to compute the

current day of the week in Williamstown

• High-level learning goals:

• Defining and calling functions.

• Using arithmetic operators in Python.

• Testing your code in interactive Python.

• Writing conditional (if else) statements to make decisions in your
code

How Computers Keep Track of Time
• On Unix machines time is represented by the number of seconds,

starting from the beginning of Thursday, January 1, 1970

• The date is arbitrary, but is called the Unix "epoch"

• In Python we can access this value using the time module()

• The time value is in UTC (current time in England)

• While the value is a float, we only need the integer part for this lab

Figuring Out the Day of the Week
• The time module gives us the total number of seconds since the Epoch

• Our goal: Use this value to figure out what the current day of the week
is in England (for now, later we will deal with timezones)

• Approach (break down the problem):

• How many minutes have elapsed since the Epoch?

• How many hours? Days?

• Suppose the number of days divide evenly by 7. What day of the
week is it? What if they do not divide evenly?

• How do we do this using arithmetic operations?

• Hint: Think about our example involving numCoins from last week

UTCDay(timeval)
• This function takes a floating point number as a parameter, timeval

• timeval represents the UTC time in England

• timeval is the total number of seconds since the Epoch

• This function should return:

• A number between 0-6, which is the day of the week
corresponding to timeval

• Where 0 is Sunday, 1 is Monday, ..., 6 is Saturday

Interactively Testing Functions
• Enter interactive Python by typing python3 at the Terminal

• Import the function and any modules you need

>>> from day import UTCDay

>>> from time import time

• Call your function and see if it returns the desired output

• If you need to make changes to the code in day.py:

• Quit out of interactive python session (Ctrl-D or exit())

• Restart interactive Python; re-import modules before resuming testing

• Hint: Can press up on keyboard to see previously typed commands in
interactive Python

Running as a Script
• To run a program as a script:

• type python3 (filename.py) in the Terminal

• This ensures that the code block within if __name__ == '__main__'
block is executed

• Note: The code in this if block is not run in interactive Python

