
CS134:  
Functions, Booleans & Conditionals

Announcements & Logistics
• Homework 2 is due Monday 11 pm

• Ten multiple-choice questions on Glow

• Try to answer them using pencil and paper first

• Can verify answers using interactive Python if you wish

• Lab 2 has been posted, due Wed 11pm / Thur 11pm

• Plan to spend 30-60 min on it before arriving at lab

• Please double check your Peoplesoft enrollment and make sure you’re in the
correct lab and lecture section (today is the last day to make changes!)

• Windows users who had trouble with computer configuration: see email from
Steve and let us know if you need help

Do You Have Any Questions?

Last Time
• Discussed functions in greater detail

• Reviewed the built-in functions:

• input(), print(), int(), float(), str()

• Saw that some functions return an explicit value (called fruitful)

• int(), input(), our definition of square()

• Other functions “do something” but don’t explicitly return

• print(), user-defined functions without explicit return statement

• Such functions “secretly” return a None value (more on this

today!)

Jupyter Notebook:

Let’s See Some Examples

(from last lecture’s notebook)

Today’s Plan
• Write a non-trivial function together in Atom

• Review two ways to test functions:

• interactively (Python prompt >>> in Terminal)

• by running it as a script (Save file in Atom, run in Terminal)

• Wrap up discussion of functions

• Discuss return statements and variable scope in more detail

• Start learning about conditionals (Lab 2!)

• Boolean data type

• Making decisions in Python using if else statements

Exercise: Making Change
• Suppose you are a cashier and you need to make change for a given

number of cents using only quarters, dimes, nickels, and pennies

• Most cashiers use the following greedy strategy to make change using
the fewest number of coins:

• Use as many quarters as possible first, then as many dimes as
possible next, and so on, using pennies last

• Assume you have an unlimited supply of each coin

Exercise: Making Change
• Problem. Let us write a function makeChange(cents) that

takes as a parameter an integer cents and returns the fewest
number of coins needed to make change for cents cents

• Approach: Decompose the problem into smaller pieces

• What is the maximum number of quarters we can use?

• q = cents // 25

• How much money is left after we use q quarters?

• cents = cents % 25

• For the remaining cents, what is the maximum number of dimes

can we use?

Example Code

Ignore this for now... We will come
back to this soon.

Let’s implement this together!

Solution

Two Ways To Test Our Code

2) Test interactively by importing the function in
interactive Python. We’ll see this again in Lab 2.

1) Write code in a file change.py. Execute the
program from the Terminal using python3.

Aside: Running Code in Textbook

Three carrot signs (>>>) represent
interactive Python mode (in Terminal)

Longer pieces of code are better run
as a script (use Atom)

Variable Scope
• Local variables: An assignment to a variable within a function

definition creates/modifies a local variable

• Local variables exist and are valid only within a function’s body, and
cannot be referred to outside of it

• Parameters are also local variables that are assigned a value when
the function is invoked

def square(num):

return num*num

>>> square (5)
25
>>> num
NameError: name ‘num’ is not defined

Variable Scope: A Tricky Example
def myfunc (val):

val = val + 1

print('val = ', val)

return val

val = 3

newVal = myfunc(val)

Global scope

myfunc
Some
code

val 3

newVal

def myfunc (val):

val = val + 1

print('val = ', val)

return val

val = 3

newVal = myfunc(val)

Global scope

3

myfunc frame

val

val = val + 1

print(`val =`, val)

return val

myfunc
Some
code

val 3

newVal eww

Variable Scope: A Tricky Example

def myfunc (val):

val = val + 1

print('val = ', val)

return val

val = 3

newVal = myfunc(val)

Global scope

3

myfunc frame

val

val = val + 1

4

print(`val =`, val)

return val 4

myfunc
Some
code

val 3

newVal eww

Variable Scope: A Tricky Example

def myfunc (val):

val = val + 1

print('val = ', val)

return val

val = 3

newVal = myfunc(val)

Global scope

3

myfunc frame

val

val = val + 1

4

print(`val =`, val)

return val 4

myfunc
Some
code

val 3

newVal 4

Information flow out of a function is only through return statements!

Function frame destroyed
(and all local variables lost)

after return from call

Variable Scope: A Tricky Example

def myfunc (val):

val = val + 1

print('val = ', val)

return val

val = 3

newVal = myfunc(val)

Global scope

myfunc
Some
code

val 3

newVal 4

Variable Scope: A Tricky Example

Return Statements
• return only has meaning inside of a function definition

• A function definition may have multiple returns, but only the first
one encountered is executed!

• We will see functions with multiple returns very soon!

• Any code that exists after a return statement is unreachable and will

not be executed

• The value returned by the function’s return statement replaces the

function call in a computation

• Functions without an explicit return statement implicitly return None

Moving on:

Making Decisions

Making Decisions

If it is raining, then bring an umbrella.

If the light is yellow, slow down. If it is red, stop.

If your name starts with letters A-L, test on Tuesdays.

If you are inside an academic building, wear a mask.

Making Decisions

If it is raining, then bring an umbrella.

If the light is yellow, slow down. If it is red, stop.

If your name starts with letters A-L, test on Tuesdays.

If you are inside an academic building, wear a mask.

If it is raining, then bring an umbrella.

Is it raining?

Is it yellow? red? green?

Decisions Based on Yes/No Questions

If the light is yellow, slow down. If it is red, stop.

If your name starts with letters A-L, test on Tuesdays.

If you are inside an academic building, wear a mask.

Does your name start with A-L?
Are you inside ?

Boolean Types
• Python has two values of bool type, written True and False
• These are called logical values or Boolean values, named after 19th century

mathematician George Boole

• True and False must be capitalized!

• Internally True = 1, False = 0

• Boolean values naturally result when answering a yes or no question

• Is 10 greater than 5? Yes/True

• Is 23 an even number? No/False

• Does 'Williams' begin with a vowel? No/False

• Boolean values result naturally when using relational and logical
operators

Relational Operators
< (less than), > (greater than)

<= (less than or equal to), > = (greater than or equal to)

== (equal to), ! = (not equal to)

>>> 3 > 5

False

>>> 5 != 6

True

>>> 5 == 5

True

Reminder that the single = is an assignment, double == is equality

Relational Operators
< (less than), > (greater than)

<= (less than or equal to), > = (greater than or equal to)

== (equal to), ! = (not equal to)

>>> 0 == True

False

>>> True == True

True

>>> int(False)

0

>>> int(True)

1

Reminder that the single = is an assignment, double == is equality

Boolean Expressions and If Statement
• Python expressions that result in a True/False output are called

boolean expressions

• For example, checking if a user's entered number, num, is even

• How do we do this? (What is a property of even numbers that we can
use to test this condition?)

• Even numbers are divisible by 2 (give remainder zero)

• Thus, num % 2 should be zero if and only if num is even

• Now we have a Boolean expression we can test for : num % 2 == 0
• We can implement "conditional statements" in Python using Boolean

expressions and an if-else statement

Python Conditionals (if Statements)
if <boolean expression>:

statement1

statement2

statement3

else:

 statement4

 statement5

If it is raining, then bring an umbrella.

Else, bring your sunglasses.

Note: (syntax) Indentation and
colon after if and else

Conditional Statements: If Else
• Consider the following functions that check if a number is even or odd

