
Sequence Alignment Sample Design
CSCI 134

This is one way to structure the program, but certainly not the only way. It covers the
main properties of the program, but is not a complete implementation --- there may be
additional useful methods, instance variables, constants, etc. to include in the code.

Feel free to use ideas from this design in addition to your original designs while working
on the code.

class Organism

Instance Vars:

• String binomialName the organismʼs binomial name
• String commonName its common name
• String aminoAcidSequence the particular sequence to be aligned

	
Constructor:

Organism(String bName, String cName, String sequence)
 Remember the binomial name, common name, and sequence for
 later

Methods:
• public String getBinomialName()

return the binomial name

• public String getCommonName()

return the common name

• public String getSequence()

return the sequence

class OrganismCollection

Instance Vars:

• Organism[] organisms Array of organisms

• int count Number of organisms in array
	
Constructor:

OrganismCollection(int max)
 Construct the array with size max

Methods:
• public void add(Organism newOne)

if thereʼs still room in the array, add a new organism to the array
increase the count by one

• public int size()

return the number of elements currently in the array

• public Organism organismAtIndex(int n)

if n is a valid index, return the organism at index n

• public Organism getOrganism(String cName)
if there is an organism in the array with common name cName, return the
organism
otherwise return null

• public int getIndex(Organism org)
if org is in the array, return its index
otherwise return -1

class SequenceAlignmentController extends WindowController
implements ActionListener

Instance Vars:

• JTextField seq1Field, seq2Field To enter sequences to be aligned
• JButton alignFieldPairButton Click to align seqʼs in text fields

• JButton zoomIn, zoomOut, clearDisplay To modify display

• JComboBox choice1, choice2 Menus for choosing organisms
• JButton alignChoicePairButton Click to align selected seqʼs in menus
• JButton alignAllButton Click to align all seqʼs in menus
• JButton openOrgFileButton Click to load a file of sequence data

• JButton simpleButton, blosomButton To select similarity metric

• Text alignmentDisplay1, alignmentDisplay2 To display on canvas

• OrganismCollection organisms A collection of organisms

• SimilaritySchemeInterface similarityScheme Similarity metric

begin():

 Set up the GUI:
 canvas for displaying alignments in the CENTER
 JPanel in the WEST for buttons that control canvas display
 JPanel in the NORTH to manually enter sequences; button to align them
 JPanel in the SOUTH for button to select a file; menus and buttons
 JPanel in the EAST for buttons to select similarity metric
 Initialize similarityScheme to be a SimpleSimilarityScheme

Methods:
• private void loadOrgFile(String orgFile)

construct a new organism collection
try
 create a BufferedReader (or Scanner)
 while (the file still has data)
 read it
 add the organism to each menu
 add it to the collection
catch

• private void alignAndDisplay(String seq1, String seq2)

align the given sequences
display the alignment on the canvas

• private void displayBestMatches(OrganismScoreMatrix m)

display all the ranked matches on the canvas

• public void actionPerformed(ActionEvent e)
determine which button was clicked
react appropriately

class SimpleSimilarityScheme implements SimilaritySchemeInterface

Instance Vars:

• private final int MATCH_SCORE = 2
• private final int MISMATCH_SCORE = -1
• private final int GAP = -1 the particular sequence to be aligned

	
Constructor:

SimpleSimilarityScheme()
 Nothing to do here

Methods:
• public int getSimilarity(char c1, char c2)

return MATCH_SCORE if c1 and c2 match
return MISMATCH_SCORE otherwise

• public int getGapScore()

return the gap score

class OrganismScoreMatrix

Instance Vars:

• OrganismCollection organisms organisms for which to compute scores
• int[][] scoreMatrix store scores for all pairs of organisms
• SimilaritySchemeInterface similarityScheme the similarity metric

to be used during alignment
	
Constructor:

OrganismScoreMatrix(OrganismCollection collection,
 SimilaritySchemeInterface scheme)

 Construct the score matrix
 Remember the collection and scheme
 Compute the score matrix

Methods:
• private void computeScoreMatrix()

for each pair of organisms
 if both organisms in the pair are the same, set their match score to a
 constant
 else construct a new Aligner for the two organismsʼ sequences,

 compute the alignment,
 get the score for the alignment and store it in the proper place in the matrix

• public int[][] getMatrix()

return the score matrix

class Aligner

Instance Vars:

• private static final int DIAG = 1
• private static final int LEFT = 2
• private static final int UP = 3
• int[][] h the alignment score matrix
• int[][] direction the array of directions
• String seq1, seq2 the strings to align
• SimilaritySchemeInterface similarityScheme similarity metric to use
• String alignment = “” the final alignment; none at the start
• int score = -999 the alignment score; -999 if no alignment yet

	
Constructor:

Aligner(String sequence1, String sequence2
 SimilaritySchemeInterface scheme)

 Construct the matrices; initialize first row and column of direction matrix
 Remember the sequences and similarity scheme
 Compute the alignment

Methods:
• private void computeAlignment()

for x = 1 to the number of columns
 for y = 1 to the number of rows
 compute h[x][y] and direction[x][y] by determining the maximum of
 the four values as specified in the algorithm
find the highest value in h; that is the score of the best alignment
remember the row and column of the highest value in order to trace back
construct a 1-d array of int, to hold the directions of the trace
trace back through the direction array, starting at the location of the highest value
 while not yet at direction[0][0]
 record the directions traversed
declare local variables for the two sequences as theyʼre aligned:

s1 = “”
s2 = “”

 for loop to walk through 1-d trace array backward
 if trace[i] is diagonal, add one character from each original sequence to
 the corresponding aligned sequence
 else if trace[i] is left, add a char from seq1 to s1, add a “-“ to s2
 else if trace[i] is up, add a char from seq2 to s2, add a “-“ to s1
 if the high score in h was not in the lower right corner, add the missing sequence
 suffixes to s1 and s2
 alignment = s1 + “\n” + s2

• public int getScore()
return the score

• public String getAlignment()
return the alignment

