Computer Science 134
Spring 2003

Final Examination

Question Points Score Description

1 12 Strings

2 10 Concurrency

3 10 Exceptions

4 12 Searching and Sorting

5 12 Arrays

6 20 Multidimensional Arrays
7 8 Inheritance

8 16 Recursion

Total 100

This examination is closed book. You have 2.5 hours to complete the exam. Good luck!
Please mark your lecture section:
9am 10am
Please mark your lab section:

Monday Tuesday

Your Name (Please print)

| have neither given nor received aid on this examination

1) Strings (12 points)

You are to write a method getParenStrings of a class A that takes a String as its only
parameter and returns a String containing all parenthesized substrings of the given String.
The returned String should contain all of the parenthesized substrings (without the parentheses),
separated by new lines.

For example, the code
A a = new A();
String sentence = "Some words (like these) are in parens (you see)";
System.out.println(a.getParenStrings(sentence));

should print out

like these
you see

Recall that the Java String class includes a method indexOf (String s, int i) that will
give the position within the String of the first occurrence of the substring s, starting at position i,
and a method substring(int startPos, int beyondEndPos) that returns the
substring of the given String.

You may assume that there are no nested parentheses, and that each open parenthesis has a
matching close parenthesis later in the string.

Please write the method below:
public class A {

public String getParenStrings(String str) {

2) Concurrency (10 points)

In your first array laboratory, you wrote the Simon program, which used a SongPlayer class. To
help detect secret messages in songs (a favorite of conspiracy theorists), we now wish to write a
ReverseSongPlayer class. The idea is that this song player should be an ActiveObject
that takes a song and plays it backwards forever. The class also has a method changeSong that
erases the old song in the array (wouldn’t want the bad guys to be able to find it!) and creates a new
song array. Here is the code of the class:

import java.applet.*;
import objectdraw.*;

public class ReverseSongPlayer extends ActiveObject {
AudioClip[] song;
int size, current;

public ReverseSongPlayer (AudioClip[] startSong, int size) {
song = startSong;
this.size = size;
start();

}

public void run(){
while (true) {
playNotes();
}
}

public void playNotes() {
for (int note = size -1; note >= 0; note--){
song[note].play();
pause(250);

}

public void changeSong(AudioClip[] newSong, int newSize) {
for (int note = 0; note < size; note++) {
song[note] null;

}

song = newSong;
size = newSize;

}

There is a Controller class that creates the ReverseSongPlayer and also calls
changeSong whenever a user pushes a Button in the window that pops up when the program
begins.

a. Everything works fine except occasionally when the button is pushed and the
Controller calls method changeSong when the ReverseSongPlayer is busy
playing the song. Please explain what unfortunate thing might happen in this circumstance.

b. How could the programmer prevent this bad thing from happening when the user pushes the
button when a song is playing. You are not allowed to change any of the code inside any of the
method bodies in ReverseSongPlayer (e.g., you are not allowed to omit the for loop in
changeSong).

3) Exceptions (10 points)

You have all had the experience of getting Nul1PointerExceptions when running programs
in Java. A frustrated programmer kept getting these exceptions when executing the following line
of code:

x = fst.getValue() + snd.getValue() / third.getValue();

where x is an int variable and each of the calls to getValue () also returns an int. Out of
frustration, the programmer replaced that line with the following:

try{
x = fst.getValue() + snd.getValue() / third.getValue();
catch (NullPointerException exc) {
System.out.println(“fst is: “+fst+”, snd is: “+snd+”,
third is: “+third);
x = 0;
}

System.out.println(x);

You may assume that if £st, snd, and third are different from null then
their values would print the results of sending getValue () to the object referred to by the
variable. [It is not the case that all of the following scenarios will raise null pointer exceptions.]

a. Please discuss what is printed in the revised code when £st .getValue () returns 3,
snd.getValue () returns 6, and thirdis null.

b. Please discuss what is printed in the revised code when £st.getValue () returns 3,
snd.getValue () returns 6, and third.getValue () returns 2.

c. Please discuss what is printed in the revised code when £st .getValue () returns 3,
snd.getValue() returns 6, and third.getValue () returns 0. Hint: a division by O throws
an ArithmeticException.

4) Searching and Sorting (12 points)

For parts a-c, assume that you are given an array of 1,024 (=2'°) strings, each of which contains a
single word. In each case, you should use the most efficient of the algorithms we discussed that is
applicable.

a. If the array is not sorted, how many of the strings will you need to look at in the worst case
to determine whether or not the array contains a given word?

b. Now, suppose the array of strings has been sorted alphabetically. How many words will
you need to look at in the worst case to determine whether or not the array contains a given
word?

c. If your starting array is not sorted, you may choose to sort the array alphabetically before
searching for the word. Is this worthwhile if you are searching for just one word in the
array? What about if you are searching for over 1,000 words in the array? Explain briefly.

d. Recall that selection sort works by first finding the largest element in the array and moving
it to the last position in the array. It then finishes by sorting the rest of the array. Suppose
that sorting an array of 1,000 elements takes 2 seconds. Approximately how long will it take
to sort 10,000 elements using selection sort?

5) Arrays (12 points)

A computer science student, we’ll call him John Doe, probably at some other college far, far away
from here, was working on his lab program. The class John was working on is supposed to keep a
collection of int values in an array. The insert method places a new value at position O in the
array, after moving up existing values up to make room. The remove method returns the value at
the end of the array, and removes it from the array.

John’s program isn’t working. Here is his code:

public class IntCollection {

private static final int ARRAY SIZE = 5;
private int[] intArray;
private int currentSize;

public IntCollection() {

intArray = new int[ARRAY SIZE];
currentSize = 0;

}
public void insert(int newValue) {

for (int index=0; index<currentSize; index++) {
intArray[index+1] = intArray[index];

}
intArray[0] = newValue;
currentSize++;

}

public int remove() ({

currentSize--;
return intArray[currentSize];

}

John has been testing his IntCollection with the following code segment:
IntCollection ic = new IntCollection();

ic.insert(17);

ic.insert(23);

ic.insert(3);

ic.insert(8);
System.out.println(ic.remove());
System.out.println(ic.remove());
System.out.println(ic.remove());
System.out.println(ic.remove());

He expects the program to print

17
23
3
8

a. What does the program print?

b. Correct the code on the previous page so that it behaves correctly.

c. What will happen if your corrected IntCollection class is used as follows?

IntCollection ic = new IntCollection();
for (int i=0; i<10; i++) {

ic.insert(i);

}

d. How should you modify the insert method avoid the problem demonstrated in part c?

6) Multidimensional Arrays (20 points)

Design a class GameBoard that has as an instance variable, gameArray, that is a two
dimensional array of Colors. The constructor should take parameters numRows, numCols, and
startColor, where numRows is the number of rows in the array, numCols is the number of
columns, and startColor is a value of type Color. The constructor should create an array of
the appropriate size and place startColor in every slot of the array.

The class will also contain a variety of other methods (e.g., to change colors in rows and columns),
but the only one you need to write is a method checkWin that takes parameters rowNum and
colNum and returns true only if both parameters are legal (i.e., rowNum is a legal row number
and colNum is a legal column number), and all the colors in the row given by rowNum are the
same color and all of those in the column given by colNum are the same color. If any of these fail
to hold then the method should return false.

Be sure to write both the constructor and checkWin method.

7) Inheritance (8 Points)

Given the class definitions below, what does the code snippet that is at the bottom of the page
output?

public class Road {
public int speedLimit () {
return 55;

}

public class CityStreet extends Road {
public int speedLimit () {
return 30;

}

public class Interstate extends Road {
public int speedLimit () {
return 65;
}
}

public class StateHighway extends Road {

Road [] road = new Road[3];

road[0] = new CityStreet();

road[l] = new Interstate();

road[2] = new StateHighway();

for (int 1 = 0; 1 < road.length; i++) {
System.out.println(road[i].speedLimit())

~10-

8) Recursion (16 Points)

One of our earliest examples of recursion was the Broccoli problem. On this exam, we
want you to add a method that simulates the effect of a worm burrowing into a part of the
broccoli and cutting off the flow of nutrients to all parts of the broccoli that extend from that
part. Thus you need a method called damage that takes a Location as a parameter. If
that Location is on a part of the broccoli then that part should be turned black as well as
all other parts extending from there, up to and including the flowers. You need to add
appropriate code for this method to the BroccoliPart interface and the classes
BroccoliBranch and Flower. The relevant parts of the original code are given below.
Please write your answers on a separate page (and indicate in which class each new piece of
code belongs).

public interface BroccoliPart {
// amount to move the broccoli part
public void move(double x, double y);

// whether a point is contained in the broccoli part
public boolean contains(Location point);

}

public class BroccoliBranch implements BroccoliPart {

// stem of broccoli
private AngLine stem;

// branches of broccoli
private BroccoliPart left, center, right;

// Draw broccoli by recursively drawing branches (and flower)
public BroccoliBranch(Location startLocation, double size,
double direction, DrawingCanvas canvas)
{
// Draw stem and color green
stem = new AngLine(startLocation, size, direction, canvas);
stem.setColor (BROCCOLI_COLOR) ;

if (size > MINSIZE) { // draw branches
left = new BroccoliBranch(destLocation, size * TOP_FRACT,
direction + Math.PI/9.0, canvas);

// draw flowers
new Flower (destLocation, size * TOP_FRACT,
direction + Math.PI/9.0, canvas);

} else
left

Il

“11-

// @param x,y amount to move broccoli
public void move(double x, double y) {
stem.move(x,y); // move stem

left.move(x,y); // move other parts
center.move(XxX,y);
right.move(x,y);

}

// @param point location to be checked for containment in broccoli
public boolean contains(Location point) {
return (stem.contains(point) || left.contains(point) ||
center.contains(point) || right.contains(point));

public class Flower implements BroccoliPart {

private AngLine stem; // stem of broccoli
private FilledOval bud; // flower of broccoli plant

// Draw flower
public Flower (Location startCoords, double size,
double direction, DrawingCanvas canvas) {
stem = new AngLine(startCoords, size, direction, canvas);
stem.setColor (BROCCOLI_COLOR) ;

bud = new FilledOval(destLocation,BUD_SIZE,BUD SIZE,canvas);
bud.setColor(Color.yellow);
}

public void move(double x, double y) {
// move stem
stem.move(x,Vy);

// move bud
bud.move(x,y);

}
public boolean contains (Location point) {
return stem.contains(point) || bud.contains(point);
}

—12—

Answer to Question 8:

—13—

