
Centipede Sample Design
CSCI 134
 
This is one way to structure the program, but certainly not the only way.  It covers the 
main properties of the game, but is not a complete implementation --- there may be 
additional useful methods, instance variables, constants, etc. to include in the code.  
 
Feel free to use ideas from this design in addition to your original designs while working 
on the code.
 
 
class Segment
 
Instance Vars:
     

● private static final int SIZE = 16   Width/height of Segment pic      
● private static final int SPEED = 4   horizontal speed for moving  

     

● VisibleImage body            The segment graphical object
 

● boolean goingEast            Is the segment moving east or west?
 

● Field shrooms                The mushroom field through which
                             the segment is moving
 

● Zapper zapper                The zapper the segment is attacking
 
Constructor:
     
     Segment(Image segmentPic, Location point, Zapper aZapper,

             Field aShrooms, DrawingCanvas aCanvas) 

Create a segment at the given point with the given picture.  Remember the shrooms and 
zapper for later.

     
Methods:

● public void step()

if (goingEast) {
           if about to hit mushroom or east edge of field, move down and set goingEast to false;
           else move SPEED pixels to right
    } else {
           if about to hit mushroom or west edge of field, move down and set goingEast to true;
              else move SPEED pixels to left



    }
    if segment is showing and overlaps the zapper, kill the zapper.
        

● boolean contains(Location point)

return true if the segment contains the point
 

● public void kill() 
    hide the segment image
     

● public boolean isAlive()

    return true if the segment image is showing
 

● public double getX() 

● public double getY()

return the x and y coordinates of the segment
 
 
class Centipede extends ActiveObject
     
Instance vars:

● Segment[] segments     Array of Segments making up the centipede
● Field shrooms          Field of shrooms on the screen
● Zapper zapper          Zapper we are attacking
● ScoreKeeper score      The game's score keeper

     
Constructor:
 
    public Centipede(Image segmentImage, int numSegments,                   
                   Zapper aZapper, Field aShrooms, 

                   DrawingCanvas aCanvas)  
Create the segments array and all the segments so that they are all just off the top left 
corner of the screen.  Initialize the other instance variables with the values passed to the 
constructor.  Call start().
 

Methods:
● public void run()

    while (the game is not over) {
             move each segment

     pause
     if (all segments are dead) tell the scorekeeper the game is over

    }
  

● public boolean tryToHitSegment(Location point)



If point is within an alive segment, kill that segment, make a mushroom appear in its 
place, and return true.  Remember: don't remove the segment from the array --- just tell 
it to hide its image.  Return false if no segments are hit.

 
 
class Field
     
Instance vars:

● private static final int SHROOM_SIZE = 16   Width/height of
                                            shroom pics

● VisibleImage[][] shrooms     2D array of shroom pics, some of 
                             which will be hidden

 
Constructor:
 
    public Field(Image shroom, int numShrooms, DrawingCanvas canvas) 

Create the array of mushrooms based on the canvas size and SHROOM_SIZE.  Fill 
it with hidden shroom VisibleImages.  Then randomly pick numShrooms of those 
VisibleImages to show.
 

Methods:
● public boolean overlapsShroom(Location point)

Returns true if point is contained in a shroom that is shown on the screen.  Return false 
if point is outside of the Field boundaries or within a hidden shroom.   

  
● public void showShroom(double x, double y)

● public void hideShroom(double x, double y)

(x,y) must be a valid location in the Field's boundaries.  Show/hide the mushroom 
containing the point (x,y).

 
● private int getRow(double y)

● private int getColumn(double x)

Helper methods provided to convert screen coordinates to column and row indexes.
 
 
class Missile extends ActiveObject
     
Instance vars:

● Line missile           missile on the canvas
● Field shrooms          Field of shrooms on the screen
● Centipede bug          Centipede we are shooting at
● ScoreKeeper score      The game's score keeper



 
Constructor:
 
    public Missile(Location loc, Field aShrooms, ScoreKeeper aScore, 
                 Centipede aBug, DrawingCanvas canvas)

    Create the missile line at the given location, and set up instance variables.
    Call start().
 

Methods:
● public void run()

  Move the line up the screen until it goes off the top, hits a shroom, or hits the bug.
   Then remove line from screen, and update score appropriately if it hit a shroom or bug.
 
 
class Zapper
     
Instance vars:

● FilledRect body         Objects showing zapper on screen
● FilledRect gun

 

● ScoreKeeper score       Scorekeeper for game
● DrawingCanvas canvas    the canvas

 
Constructor:
 
    public Zapper(Location pt, ScoreKeeper aScore, 
                DrawingCanvas aCanvas)

Create zapper graphical objects and initialize rest of instance vars.
 

Methods:
● public void left()

● public void right()

  move to the left/right, but not off the screen
 

● public void shoot(Field shrooms, Centipede bug)

Create a new missile with the given shroom field and bug.  Pass the scorekeeper to the 
missile's constructor too.

● public boolean overlaps(VisibleImage image)

Return true if the zapper overlaps the given image.
 



 
class ScoreKeeper
     
Instance vars:

● int score            current score  
● Jlabel messageLabel  label showing message on bottom of screen
● boolean gameOver     true if the game is over because no segments left or 

                     zapper killed
 
Constructor:
 
    public ScoreKeeper(JLabel aMessageLabel)

Initialize score to 0 and gameOver to false.  Display an initial message in the label.
 

Methods:
● public void increment(int amount)

  If the game is not over, add amount to score and change the message 
 

● public void endGame()

  Display game over message and set gameOver to true
 

● public boolean isGameOver()

  Return whether or not the game is over.
 
 
class CentipedeController extends WindowController 
                                              implements KeyListener
 
Instance vars:

● Field shroomField

● Centipede centipede

● Zapper zapper

● ScoreKeeper score

 
Methods:

● public void begin()

Create the black background and the objects stored in the instance variables.  Also 
create the JLabel for the south part of the screen that will be used by the score keeper.

 
● public void keyPressed(KeyEvent event)

  Tell the zapper to move/shoot in response to the various keystrokes.
    If the score keeper says that game is over, do nothing.


