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ABSTRACT

Traits have been proposed as a more flexible mechanism for code
structuring in object-oriented programming than class inheritance,
for achieving fine-grained code reuse. A trait originally developed
for one purpose can be modified and reused in a completely differ-
ent context. Formalizations of traits have been extensively studied,
and implementations of traits have started to appear in program-
ming languages. However, work on formally establishing proper-
ties of trait-based programs has so far mostly concentrated on type
systems. This paper proposes the first deductive proof system for
a trait-based object-oriented language. If a specification for a trait
can be given a priori, covering all actual usage of that trait, our
proof system is modular as each trait is analyzed only once. In
order to reflect the flexible reuse potential of traits, our proof sys-
tem additionally allows new specifications to be added to a trait in
an incremental way which does not violate established proofs. We
formalize and show the soundness of the proof system.
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1. INTRODUCTION
With class inheritance, classes have two competing roles as gen-

erator of instances and as unit of reuse; in contrast, traits are pure
units for fine-grained reuse [15]. Traits can be composed in an
arbitrary order and the composite unit (class or trait) has complete
control over conflicts that may arise and must solve them explicitly.

A trait is a set of methods, completely independent from any
class hierarchy. Thus, the common methods of a set of classes
can be factored into a trait. A trait originally developed for a par-
ticular purpose may be adapted and reused in a completely dif-
ferent context. This can lead to potentially undesired or conflict-
ing program behavior. Various formulations of traits have been
studied for JAVA-like languages (e.g., [9, 20, 23, 29, 31]). The re-
cent programming language FORTRESS [1] (which has no class-
based inheritance) has a trait construct, while the ‘trait’ construct
of SCALA [25] is indeed a form of mixin. Research on ensuring
properties of trait-based programs has so far mostly considered type
systems (e.g., [9, 20, 28, 29, 31]). These approaches ensure that the
composed program is type correct; i.e., all required fields and meth-
ods are present with the appropriate types.

This paper presents a compositional, deductive proof system for
a trait-based JAVA-like language [8]. This proof system can be used
to guarantee that programs obtained through the flexible adaptation
and composition of traits satisfy critical requirements, by reasoning
modularly and incrementally about traits, adaptation, and composi-
tion. As far as we know, no deductive proof system for trait-based
languages has been proposed so far.

The challenge in developing a deductive proof system for traits is
to support the flexibility offered by traits while providing an incre-

mental and compositional reasoning system. Ideally, when traits
are composed in a class, the trait specifications already provide
enough information to ensure the contracts of the interfaces of that
class. In this case, the actual usage of the trait corresponds to its
originally intended usage as reflected in its original specification.
This specification can be established by analyzing the trait only
once in a modular way. However, the original trait specification
may overly restrict the flexibility of trait reuse. In order to align
the proof system with this flexibility, traits are associated with sets

of possible specifications, and the applicable specification of a trait
depends on its context of composition. New specifications may be
added incrementally to a trait without violating previous specifi-
cations. When traits are composed in a class, the specification of
the composed traits is selected from compatible specifications of
its constituent traits. Hence, our proof system supports modular
reasoning for traits when applicable, but extends this modularity to
incremental reasoning when required for flexible trait reuse.

We develop an inference system for trait analysis which tracks
specification sets for traits, when traits are modified and composed.



ID ::= interface I extends I { S; } interface declaration

S ::= I m (I x) method header

T ::= Tb | Tc trait name

TD ::= trait Tb is BTE | basic trait declaration and

trait Tc is CTE composed trait declaration

BTE ::= {F; S; M} basic trait expression

TAE ::= Tb ao trait alteration expression

CTE ::= TAE | CTE1 +CTE2 composed trait expression

ao ::= [exclude m] | [m aliasAs m] | trait alteration operation

[f renameTo f] | [m renameTo m]
F ::= I f field

M ::= S { return e; } method

e ::= x | this.f | e.m(e) | new C(e) | (I)e expression

CD ::= class C implements I class declaration

by { F; } and CTE

Figure 1: The syntax of FRTJnf

This inference system adapts previous work on lazy behavioral sub-
typing [13], which developed an incremental inference system for
late bound method calls by separating the required and provided
behavior of methods, to trait modification and composition. The
approach does not depend on a particular program logic. For sim-
plicity, we use a Hoare-style notation to specify the pre- and post-
conditions of method definitions in terms of proof outlines and do
not consider, e.g., class or trait invariants.

Section 2 presents a trait-based JAVA-like language and Section 3
a specification notation for traits. Section 4 introduces the proposed
proof system for traits and discusses how it can be used to ver-
ify class and interface specifications. The formal inference system
for program analysis is introduced in Section 5, which also shows
soundness for the proof system. Related work is discussed in Sec-
tion 6. Section 7 concludes the paper and discusses future work.
Proof sketches of the main results are available in [11].

2. A TRAIT-BASED LANGUAGE
In the formulation of traits considered in this paper, a trait con-

sists of provided methods (i.e., methods defined in the trait), re-

quired methods which parametrize the behavior, and required fields

that can be directly accessed in the body of the methods. Traits are
building blocks to compose classes and other, more complex, traits
using a suite of trait composition and alteration operations. Since
traits do not specify any state, a class assembled from traits has to
provide the required fields of its constituent traits.

For the purpose of this paper, we use FRTJnf (FEATHERWEIGHT

RECORD-TRAIT JAVA normal form), a calculus for traits within a
JAVA-like nominal type system. The syntax of FRTJnf is given in
Figure 1. A basic trait expression {F; S; M} provides the methods
M and declares the types of the required fields F and methods S (that
can can be directly accessed by the bodies of the methods M). The
symmetric sum operation + merges two traits to form a new trait
and requires that the summed traits are disjoint, i.e., they do not
provide identically named methods (they may require a same field
or method). Further, traits can be manipulated by the following trait
alteration operations. The operation exclude forms a new trait by
removing a method from an existing trait. The operation aliasAs

forms a new trait by giving a new name to an existing method; in
particular, when a recursive method is aliased, its recursive invoca-
tion refers to the original method. The operation renameTo creates
a new trait by renaming all occurrences of a required field name or
of a required/provided method name from an existing trait. A class
is assembled from a trait expression by providing the required fields
and a constructor. Classes further implement interfaces, specifying
the methods that can be called on an instance of the class. For sim-
plicity, we omit the class constructors from the syntax: each class is

assumed to have a constructor of the form C(Jf){this.f= f;},
where Jf are all the fields of the class. In FRTJnf, the declaration
of types, behavior, and the generation of instances are completely
separated. Traits only play the role of units of behavior reuse and
are not types. Class-based inheritance is not present, so classes
only play the role of generators of instances. Interfaces are the
only source language types.

In the examples, when needed, we will use standard imperative
language features such as assignments this.f=e and x = e (for
x different from this), conditionals, and while-loops.

EXAMPLE 2.1. As an ongoing example, we consider a simple

bank account implementation. The following trait TAccount pro-

vides the basic operations for inserting and withdrawing money:

trait TAccount is {

int bal; // req. field

bool validate(int a); // req. mtd.

void update(int y); // req. mtd.

void deposit(int x) {this.update(x);}

void withdraw(int id, int x){

boolean v = this.validate(id);

if (v) {this.update(-x);}}

}

A basic account CAccount may then be defined as follows, where

the additional trait TAux defines the auxiliary methods required by

TAccount:

interface IAccount {void deposit(int x);

void withdraw(int id, int x);}

trait TAux is {

int bal; int owner; // req. fields

void update(int y) {this.bal = this.bal + y}}

boolean validate(int id) {return (id == owner);}

}

class CAccount implements IAccount

by {int bal; int owner;} and TAccount + TAux

Since traits define flexible units for reuse, different account behav-

ior may be defined by combining TAccount with different traits.

For instance, the class CFeeAccount charges an additional fee

whenever the balance is reduced:

trait TFee is {

int fee; int bal; // req. fields

void basicUpd(int y); // req. mtd.

void update(int y) { this.basicUpd(y);

if (y<0) {this.bal = this.bal - this.fee}}

}

class CFeeAccount implements IAccount

by {int bal; int owner; int fee;} and

TAccount + TFee + TAux[update renameTo basicUpd]

The public methods of an object are those listed in the inter-
faces implemented by its class; the other methods and fields are
private to the object and can only be accessed through this.
For instance, the only public members of classes CAccount and
CFeeAccount are the methods deposit and withdraw.

The semantics of a class composed from traits is specified
through the flattening principle [15, 23]. Flattening states that the
semantics of a method introduced in a class through a trait should
be identical to the semantics of the same method defined directly
within a class. The flattening function J·K (available in [11]) speci-
fies the semantics of FRTJnf by translating a FRTJnf class declara-
tion to a JAVA class declaration, and a trait expression to a sequence
of method declarations.

FRTJnf is a subset of the prototypical language SWRTJ [8]. The
SWRTJ type system supports the type-checking of traits in isola-
tion from the classes or traits that use them, so that it is possible to



type-check a method defined in a trait only once (instead of having
to type-check it in every class using that trait). A distinguishing
feature of SWRTJ w.r.t. the other formulations of traits within a
JAVA-like nominal type system with this property [1, 20, 29, 31] is
that SWRTJ fully supports method exclusion and method/field re-
naming operations (such as the formulation of traits by Reppy and
Turon [28] in a structurally typed setting).

In particular, FRTJnf is a subset of FRTJ [6, 7], a minimal core
calculus (in the spirit of FEATHERWEIGHT JAVA [17]) for SWRTJ.
The FRTJnf subset of FRTJ represents a “normal form” that sim-
plifies the analysis, since it ensures that trait summation happens as
late as possible in a trait composition. In the sequel, we assume that
programs are well-typed according to the FRTJ type system [6,7].

3. SPECIFYING BASIC TRAITS
The proof system in this paper does not depend on a particular

program logic. For simplicity in the presentation, we use Hoare
triples {p}t{q} [16], where p and q are assertions and t is a pro-
gram statement. Triples {p}t{q} have a standard partial correct-
ness semantics [3,4], adapted to the object-oriented setting; in par-
ticular, de Boer’s technique using sequences in assertions addresses
the issue of object creation [12]. If t is executed in a state where the
precondition p holds and the execution terminates, then the post-
condition q holds, after t has terminated. The derivation of triples
can be done in any suitable program logic. Let PL be such a pro-
gram logic and let ⊢PL {p}t{q} denote that {p}t{q} is derivable in
PL. We consider the following assertion language with assertions
a defined by

a ::= this | return | null | f | x | z | op(a).

Here, this is the current object, return the current method’s re-
turn value, f a program field, x a formal parameter, z a logical vari-
able, and op an operation on data types. An assertion pair (p,q) is
a pair of assertions such that p is a precondition and q a postcondi-
tion (for some sequence of program statements).

For a basic trait, the provided methods are annotated with asser-
tion pairs, specifying desired guarantees. A guarantee of a provided
method m may crucially depend on the behavior of the methods
called by m. Consequently, we give a proof outline [26] for the
body t of m, in which each method call is decorated with the behav-
ioral requirement needed by m in order to fulfill the guarantee, e.g.,
{r}n {s} for some called method n. Given such a proof outline, it
is straightforward to verify that the guarantee holds for m under the
assumption that all requirements can be met, by applying the rules
of PL. Let O ⊢PL t : (p,q) denote that O is a valid proof outline

for the guarantee (p,q), i.e., ⊢PL {p}O {q} holds when we assume
that the requirements given in O are correct. Each guarantee of
m has an associated set of requirements on other methods, derived
from the proof outline. The guarantee of a method together with the
associated set of requirements constitute a method specification.

A trait is designed for flexible reuse. For this reason, it may be
difficult to specify the methods in the trait in a way which covers
all possible future usage of the trait. There may be many possible
guarantees for its provided methods, depending on the context of
use. Different guarantees have different associated proof outlines,
which give rise to different requirements on the called methods.
Thus, a provided method can have several specifications reflecting
different usage contexts. The initial specification reflects the origi-
nal intended usage of the method; new specifications may be added
if new ways of using the trait are found later. If the initial speci-
fication happens to suffice for later usage, this is the special case
which coincides with modular specification. The specification of a

trait consists of the method specifications of its provided methods.

EXAMPLE 3.1. Consider the withdraw method of trait

TAccount in Example 2.1. This method may be given the fol-

lowing two specifications, labelled w1 and w2:

void withdraw(int id, int x){

boolean v = this.validate(id);

if (v) {this.update(-x);}}

// w1: (bal == b0 ∧ id == owner,bal == b0 − x)
// reqs.: {bal == b0}update(y) {bal == b0 + y},
// {id == owner}validate(id) {return== true}
// w2: (bal == b0 ∧ id 6= owner,bal == b0)
// req.: {id 6= owner}validate(id) {return== false}

where trivial specifications, e.g., that bal is not modified by

validate, are omitted for brevity. For trait TAux, we may supply

the following specifications, leading to no requirements:

trait TAux is { int bal; int owner; // req. fields

void update(int y) {this.bal = this.bal + y}}

// (bal = b0,bal = b0 + y)

boolean validate(int id) {return (id == owner);}

// (true,return== (id == owner))
}

4. COMPOSITIONAL VERIFICATION
The goal of our verification technique is to reason incrementally

about trait expressions while verifying trait-based programs. Due
to the flexible reuse potential of traits, we do not assume that a fixed
specification of a trait, given a priori, covers all potential usages of
that trait, although this is a special case of our more general incre-
mental approach. Instead, traits provide a set of possible method
specifications for each provided method that can be incrementally
extended. Thus, we devise compositional proof rules that apply to
sets of method specifications when traits are composed.

During the verification of a trait expression, a trait environment

is constructed to keep track of the specifications for the provided
methods. We assume that every method in an interface is anno-
tated with an interface contract that is an assertion pair describing
the behavior guaranteed by all implementations of that method to
reason about calls to methods on interface types. In the following,
we examine the different cases for constructing the trait environ-
ment for basic traits and composite traits constructed using the trait
composition and modification operations of FRTJnf.

Basic Traits. Let m be a method provided by a basic trait T, and
let a guarantee of m be given by the assertion pair (p,q). The re-
quirements that m imposes on the called methods, result in a proof
outline O for m with guarantee (p,q). Using this proof outline, we
establish the guarantee (p,q) for m by deductive techniques; e.g.,
using KeY [5] to verify O ⊢PL t : (p,q). Method calls may be ei-
ther external or internal. External calls rely on the interface of the
callee, so they may be analyzed directly using interface contracts.
For the proof outline O, we collect the requirements {ri}ni {si} for
internal calls in O together with the guarantee (p,q) as a specifi-
cation for m in the trait environment for T. A provided method m

may have different guarantees depending on different requirements
on its called methods. Each of these guarantees is proven using a
different proof outline, leading to different specifications for m.

Symmetric Sum of Traits. For two traits composed by symmet-
ric sum, we keep the distinction that each method specification has
particular assumptions on the required methods such that the trait
environment of the composed trait is the union of the trait environ-
ments of the single traits. In particular, method specifications are
kept in the trait environment even if their requirements cannot be
satisfied by the implementations found in other traits in the com-
position. The reason is that the composed trait may be the subject



to later trait composition or modification operations. Thus, method
specifications that were unsatisfiable in the original composition
may again be satisfiable. However, if the composed trait is used in
a class definition, the analysis of the class ignores method specifi-
cations that are unnecessary in order to verify the interface contract
of the class, thereby selecting a set of consistent method specifica-
tions from the set of all provided method specifications from the
constituents of the composed trait.

Trait Modifiers. Excluding a method from a trait does not gen-
erate any proof obligations. The trait environment of the result-
ing trait is obtained from the previous trait environment by re-
moving the method specifications of the removed method. Alias-

ing does not generate proof obligations. The trait environment for
the resulting trait is obtained by copying the method specifications
of the aliased method. Renaming of methods does not generate
proof obligations, but proof obligations for distinct methods may
now apply to the same method. The trait environment for the re-
sulting trait is obtained by consistently renaming the respective
method. Also renaming of fields does not generate proof obliga-
tions. The trait environment for the trait resulting by the trait al-
teration [f renameTo f′] is obtained by distinguishing different
cases. If f does not occur in the previous trait, the trait environment
for the resulting trait is obtained directly from the previous trait en-
vironment. Otherwise, for each method m, we consider whether f′

occurs in the body of m or not. In the former case, the method spec-
ifications of m are simply dropped. In the latter case, the method
specifications of m containing occurrences of f′ are dropped and,
in the other method specifications of m, the occurrences of f are
renamed to f′.

EXAMPLE 4.1. Let the trait TAux as specified in Example 3.1,

and consider the rename operation TAux[update renameTo

basicUpd]. The implementation of validate is unaltered by

the operation, but the update method is renamed, and the speci-

fication given in TAux applies to the new method:

void basicUpd(int y) {this.bal = this.bal + y}}

// (bal = b0,bal = b0 + y)

Trait-based Classes. The main goal of the verification process
for trait-based programs is to show that a class implements the con-

tracts of its declared interfaces. It is necessary to show that every
public method exposed through an interface guarantees the con-
tract in that interface. This result should eventually follow from the
specification of the methods, as provided by the trait expression.
In the case where the trait specifications contain sufficient guaran-
tees, this follows directly. Otherwise, new method specifications
with additional guarantees may be added to trait specifications at
need, and method specifications are collected when a class is as-
sembled from traits by trait composition. For each added method
specification, the respective method must be reinspected with a new
proof outline. Such proof outlines may lead to new requirements
on internally called methods, which makes it necessary to supply
new proof outlines for these methods. This procedure repeats for
auxiliary internal calls until the analysis is complete. Remark that
all proofs which rely on the previously established guarantees of
the provided method remain valid. Thus, the presented approach is
incremental.

By the successful analysis of a class, the interface contract of ev-
ery public method is guaranteed by the trait specifications, and the
requirements on internal calls are guaranteed by the specifications
of the called methods.

EXAMPLE 4.2. Consider the analysis of class CAccount in

Example 2.1, which is implemented by TAccount + TAux. As-

sume that in order to implement the interface IAccount, the proof

obligation: (bal = b0,(id == owner ⇒ bal == b0 − x) ∧ (id 6=
owner ⇒ bal == b0)) must be verified for method withdraw in

TAccount. Since this obligation follows by entailment from the

guarantees of w1 and w2 in Ex. 3.1, it suffices to ensure that the

requirements of w1 and w2 are satisfied for the implementations

found in TAux, which is straightforward.

Consider next the analysis of class CFeeAccount, im-

plemented by TAccount + TFee + TAux[update

renameTo basicUpd], and assume that the proof obligation

(x > 0∧ bal = b0,(id == owner ⇒ bal == b0 − x− fee)∧ (id 6=
owner ⇒ bal == b0)) is imposed on withdraw by the interface

IFeeAccount. Remark that this proof obligation does not

follow from the guarantees of w1 and w2, and a new proof outline

must then be analyzed. It suffices to extend the specifications of

withdraw with the following specification w3:

void withdraw(int id, int x) {...}

// w3: (x > 0∧bal = b0 ∧ id = owner,bal == b0 − x− fee)
// reqs.: {bal == b0 ∧y < 0}update(y) {bal == b0 + y− fee},
// {id == owner}validate(id) {return== true}

Since the above proof obligation for withdraw follows by entail-

ment from the guarantees of w2 and w3, it suffices to verify the

requirements of these specifications. The only non-trivial require-

ment is the one to update, which can be verified by the following

specification in TFee:

trait TFee is {...

void update(int y) {...}

// (y < 0∧bal = b0,bal = b0 + y− fee)
// req.: {bal = b0}basicUpd(y) {bal = b0 + y}

}

This requirement follows from the guarantee of basicUpd as

given in Ex. 4.1.

5. THE INFERENCE SYSTEM
This section presents PST(PL), a Proof System for Trait-based

programs which is parametric in the underlying program logic PL.
The calculus PST(PL) relies on a sound program logic PL, and is
defined by the inference rules given in [11]. Judgements in the
calculus are of the form C ,E ⊢ P , where E is a trait environ-

ment for trait analysis, C is a class environment for keeping track
of declarations and specifications while analyzing classes, and P

is a sequence of analysis operations. Initially, the trait and class
environments are empty, and P is a sequence of trait and class
definitions. For each analyzed trait, the trait environment E is ex-
tended with the trait definition and the specifications for the defined
methods. Thus, if the analysis of a trait T is initiated in some trait
environment E , the successful analysis of T will lead to some trait
environment E

′ which is an extension of E . In this case. we say that
E ′ is the trait environment resulting from the analysis. When ana-
lyzing classes, the class environment is extended similarly. Traits
and classes are analyzed based on the trait and class environments
resulting from the analysis of previous traits and classes.

Trait Analysis. Method guarantees are written as assertion pairs
(p,q) of type Guar. To satisfy its guarantee, a method m may im-
pose requirements of type Req on the called methods ni, of the
form {r} ni {s}. A method specification of type Spec is a tuple
〈Guar,Set[Req]〉; i.e., a specification associates a set of require-
ments with the guarantee. If 〈(p,q),R〉 is a specification for some
method m, we say that m guarantees (p,q) assuming that the re-
quirements R are satisfied for the called methods. Method specifi-



cations may be decomposed by the functions guar : Spec → Guar

and req : Spec → Set[Req] where guar(〈(p,q),R〉) , (p,q) and

req(〈(p,q),R〉) , R. These functions are straightforwardly lifted
to sets of method specifications, returning sets of guarantees and
requirements, respectively. Given a proof outline O, the function
reqs(O) returns the set of requirements occurring in O. Trait envi-
ronments E of type Env are defined as follows:

DEFINITION 5.1 (TRAIT ENVIRONMENTS). A trait environ-

ment E : Env consists of two mappings TE and SE , where TE :
TAE→ BTE and SE : TAE×Mid → Set[Spec].

Mapping TE takes a trait alteration expression and returns a ba-
sic trait expression, and mapping SE takes a trait alteration ex-
pression and a method name and returns a set of method specifi-
cations. For each basic trait of the form trait Tb is {F;S;M},
the TE mapping is extended with the definition of the trait, and
each user given guarantee leads to a specification recorded by
the SE mapping. If for instance a guarantee (p,q) is given for
method I m(I x){t}, a proof outline O must be supplied such that
O ⊢PL t : (p,q), and the specification 〈(p,q),reqs(O)〉 is included
in the set SE (Tb,m). Remark that the actual implementation that an
internal call will bind to is not known when the trait is defined, since
method binding depends on how the trait is used to form classes.
Consequently, the imposed requirements are not verified with re-
gard to any implementation during trait analysis; Requirements are
only verified at need when the specification is actually used dur-
ing class analysis. When analyzing a composed trait of the form
trait Tc is TAE1 + . . .+TAEn, where each TAEi is of the form
Tbiaoi, properties for each TAEi is remembered by the trait envi-
ronment. By the successful analysis of Tc, the mapping TE takes
TAEi to a basic trait definition containing the methods provided by
TAEi, and SE contains specifications for these methods. These en-
tities are derived by manipulating the entities of Tbi according to
the modifiers aoi as described in [11].

For each specification 〈(p,q),R〉 included in SE (TAE,m), the in-
ference system for trait analysis ensures that m is provided by TAE
and that there exists a verified proof outline O for the body t of m
such that O ⊢PL t : (p,q) where reqs(O) = R.

Class Analysis. In addition to the trait environment E , class
analysis builds a class environment reflecting the definitions and
specifications of classes. Classes are represented by a unique name
and a tuple 〈I,CTE,F〉 of type Class.

DEFINITION 5.2 (CLASS ENVIRONMENTS). A class envi-

ronment C consists of two mappings DC and SC , where DC :
Cid 7→ Class, and SC : Cid×Mid 7→ Set[Spec].

Here, DC reflects the definitions of verified classes, and SC re-
flects their verified specifications. The main purpose of the class
environment is to record the method specifications used to establish
the contracts of the implemented interfaces; The analysis of class
class C implements I by { F; } and TAE1 + . . .+TAEn is
driven by contracts of I. By type-safety, we have that each pro-
vided method m is defined in exactly one TAEi. Upon the success-
ful analysis of C, each interface contract for some provided method
m follows by entailment from the guarantees of SC (C,m). If m is
provided by TAEi, the interface contracts are ensured by reusing
already verified specifications contained in SE (TAEi,m), and possi-
bly extending SE (TAEi,m) with new specifications if needed. Thus,
SC (C,m) contains the subset of SE (TAEi,m) that is actually used to
verify the current class. In addition, the requirements imposed by
the used specifications are analyzed with regard to the implemen-
tation they bind to for C. Thus, if 〈(p,q),R〉 ∈ SC (C,m), then each

requirement {r}n {s} ∈ R follows by entailment from the guaran-
tees of SC (C,n). The definition of the entailment relation _ can
be found in [11, 13].

Soundness. When reasoning about a set of mutually recur-
sive methods, the guarantees in the specifications of all meth-
ods are assumed to hold in order to verify the body of each
methods (e.g., [4]). We now extend this approach to define
the consistency of a set of proof outlines for methods in a
flattened class with given interfaces. The flattened version of
class C implements I by { Jf; } and CTE is given by
classC implementsI { Jf; C(Jf){this.f= f;} M } as de-
fined in [11].

DEFINITION 5.3 (CONSISTENCY). Consider the flattened

class classC implements I { Jf; C(Jf){this.f= f;} M }.

For each method m ∈ M with method body t, let Sm be a set of

method specifications such that for each 〈(p,q),R〉 ∈ Sm, there ex-

ists a proof outline O where O ⊢PL t : (p,q) and R = reqs(O). The

specifications SM are consistent iff, for all m ∈ M:

1. ∀{r}m {s} ∈ contracts(I) . guar(Sm) _ (r,s)
2. ∀〈(p,q),R〉 ∈ Sm . ∀{r}n {s} ∈ R . guar(Sn) _ (r,s)

Here, the first condition expresses that the interface contracts are
satisfied, whereas the second condition expresses that the require-
ments of all internal calls are satisfied. Previous work [13] defines
a sound calculus for analyzing single inheritance class hierarchies.
Given a consistent set of specifications, the analysis of a flattened
class succeeds in this calculus. In order to ensure soundness of
PST(PL), it thereby suffices to prove that the successful analysis of
some class C leads to a consistent set of specifications for the flat-
tened version of C. The proof of this theorem can be found in [11].

THEOREM 5.4. For a given class class C implements I

by { F; } andCTE, if the successful analysis of C in PST(PL) leads

to a class environment C , then the set of method specifications for

C in C are consistent for the flattened version of C.

6. RELATED WORK
An important factor for the success of class-based object-

oriented programming is the inheritance mechanism to structure
and reuse code. Single inheritance is the best supported by formal
systems for program analysis. In the context of single inheritance,
behavioral reasoning about extensible class hierarchies with late
bound method calls is often performed in the context of behavioral

subtyping (see, e.g., [2, 19, 21, 27]). Behavioral subtyping is an in-
cremental reasoning strategy in the sense that a subclass may be
analyzed in the context of previously defined classes. In order to
avoid reverification of superclasses, method overridings must pre-
serve the specifications of overridden methods. This approach has
also been used for SCALA’s ‘trait’ construct, but “significantly re-
duce the applicability and thereby benefits of traits” [30]. Lazy

behavioral subtyping [13] is an incremental reasoning strategy for
more flexible code reuse than behavioral subtyping. With lazy be-
havioral subtyping, the requirements that a method guarantee im-
poses on late bound method calls are identified, and the main idea
is that there is no need to preserve the full specifications of overrid-
den methods. In order to avoid reverification of superclass meth-
ods, only the weaker requirements imposed on late bound method
calls need to be preserved by method redefinitions in subclasses.

Multiple inheritance is widely used in modeling notations such
as UML [10], to capture that a concept naturally inherits from sev-
eral other concepts. Versions of multiple inheritance are found
in C++, CLOS, Eiffel, and Ocaml. Creol [18] has proposed a



so-called healthy binding strategy which resolves horizontal name
conflicts by avoiding accidental overridings. The proof systems
presented in [14,22,24,32] are the only proof systems we know for
multiple inheritance class hierarchies. The work in [24] presents a
Hoare-style program logic for Eiffel that handles multiple inheri-
tance based on an existing program logic for single-inheritance by
extending the method lookup definition. In [22], method calls are
assumed to be fully qualified in order to avoid ambiguities, and
diamond inheritance is not considered. In [32], ambiguities are as-
sumed to be resolved by the programmer, a method can only be
inherited if it has the same implementation in all parents. In con-
trast, [14] applies lazy behavioral subtyping to multiple inheritance
and shows that healthy method binding is sufficient to allow in-
cremental reasoning about multiple inheritance class hierarchies.
The work in [14] resembles that of the current paper in the sepa-
ration of concerns between required and guaranteed assertions for
method calls and definitions, respectively. The main challenges
for reasoning about class hierarchies with multiple inheritance are
related to late bound method calls. In contrast, traits do not sup-
port late binding but the flexible composition of traits necessitates
a delayed selection of relevant method specifications. Technically,
this makes the two approaches fairly different. We are not aware of
any previous proposal for a deductive proof system for a trait-based
language.

7. CONCLUSION AND FUTURE WORK
This paper proposes a deductive proof system for trait-based

object-oriented programs, reflecting the fine-grained reuse poten-
tial of traits at the level of reasoning. The approach focusses on
verifying interface contracts. We plan an extension to additionally
consider invariants, both at the level of classes and traits. A trait
invariant may, for instance, capture relations between the required
fields of a trait which extends the range of properties that can be
incrementally verified for trait-based programs. Further, we plan
to extend the KeY system [5] for deductive verification of JAVA

programs to SWRTJ programs and to implement the proof system
proposed in this paper within KeY.
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