
On the Interplay of Exception Handling and Design by
Contract: An Aspect-Oriented Recovery Approach

Henrique Rebêlo1 Roberta Coelho2 Ricardo Lima1 Gary T. Leavens3

Marieke Huisman4 Alexandre Mota1 Fernando Castor1
1 Federal University of Pernambuco, PE, Brazil

2 Federal University of Rio Grande do Norte, RN, Brazil
3 University of Central Florida, Fl, USA

4 University of Twente, Netherlands

ABSTRACT
Design by Contract (DbC) is a technique for developing
and improving functional software correctness through defi-
nition of “contracts” between client classes and their suppli-
ers. Such contracts are enforced during runtime and if any
of them is violated a runtime error should occur. Runtime
assertions checkers (RACs) are a well-known technique that
enforces such contracts. Although they are largely used to
implement the DbC technique in contemporary languages,
like Java, studies have shown that characteristics of contem-
porary exception handling mechanisms can discard contract
violations detected by RACs. As a result, a contract vi-
olation may not be reflected in a runtime error, breaking
the supporting hypothesis of DbC. This paper presents an
error recovery technique for RACs that tackles such limita-
tions. This technique relies on aspect-oriented programming
in order to extend the functionalities of existing RACs stop-
ping contract violations from being discarded. We applied
the recovery technique on top of five Java-based contempo-
rary RACs (i.e., JML/jml, JML/ajml, JContractor, CEAP,
and Jose). Preliminary results have shown that the pro-
posed technique could actually prevent the contract viola-
tions from being discarded regardless of the characteristics
of the exception handling code of the target application.

1. INTRODUCTION
Design by Contract (DbC) is a technique for developing

and improving functional software correctness [14]. The key
mechanism in DbC is the use of the so-called “contracts”.
A contract formally specifies an agreement between a client
and its suppliers. Client classes must satisfy the supplier
class conditions before calling one of its methods. When
these conditions are satisfied, the supplier class guarantees
certain properties, which constitute the supplier class’s obli-
gations. However, when a client or supplier breaks a condi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP’11, July 26, 2011, Lancaster, UK.
Copyright 2011 ACM 978-1-4503-0893-9/11/07 ...$10.00.

tion (contract violation), a runtime error occurs. The use of
such pre- and postconditions to specify software contracts
dates back to Hoare’s 1969 paper on formal verification [7].
The novelty with DbC is to make these contracts executable.

In this context, runtime assertion checkers (RACs) are a
well-known technique used for enforcing these contracts as
the program executes [1, 16, 17, 4]. We can cite, for instance,
the Java-based contemporary RACs: (i) JML/jmlc [1], (ii)
JML/ajmlc [16], (iii) JContractor, (iv) Contract Enforce-
ment Aspect Pattern (CEAP) [17], and (v) Jose [4]. Al-
though they are largely used to implement the DbC concepts
in Java, a previous study [8] has shown that the interaction
between some exception handling (EH) contexts (i.e., finally
blocks) and the contemporary RAC techniques can cause the
latter to fail to properly communicate exceptions that re-
port contract violations. Current RACs represent current
contract violations as exceptions. As a consequence, specific
exception handling contexts on the target application have
the ability to accidently capture such exceptions, silencing
the contract violation and allowing the system to continue
its execution on an illegal state.

However, a deep analysis of this limitation led us to con-
clude that the conflicts that arise from the interplay be-
tween RACs and the EH code are not caused by specific
EH contexts. They are related to the way exception han-
dling mechanisms are implemented in modern languages like
Java. The conventional exception handling facilities pro-
motes the problem of accidental exception capture due to the
dynamic nature of exception-handling semantics (see Sec-
tion 2). Hence, none of the existing contemporary RACs [1,
16, 17, 4] can prevent contract violation errors from being
discarded during program’s execution.

In this paper we present an approach to prevent contract
violations from being discarded regardless of the exception
handling contexts present on the target applications. Our
approach relies on the use of aspect-orientation [10] to mon-
itor the exceptions that represent contract violations and
force such exceptions to be signaled — preventing EH con-
texts from negatively affecting RAC generated exceptions.
We claim that our approach focuses on “recovery” because
we address situations where the RAC infrastructure cannot
behave as expected. In these situations, we could say that
the RAC infrastructure “fails”. In the event of a contract vi-
olation, the RAC infrastructure should signal an exception
indicating this event. This exception prevents parts of the

application from running in a situation where they would
not be consistent. By ensuring exception propagation in
situations where it would be accidentally caught, we steer
the RAC infrastructure back to its expected behavior, thus
recovering it from its erroneous state.

This approach is implemented in the form of an aspect
library, which can be associated with any Java-based RAC.
The main contributions of this paper are as follows:

• we present the fault model that describes the excep-
tion handling scenarios that can prevent current RACs
from effectively signaling contract violations (i.e., ex-
ception overriding, exception swallowing and unintended
exception subsumption);

• we show how aspect-oriented concepts can be used to
overcome the obstacles posed by such interplay be-
tween RACs and the exception handling code on the
target application;

• we developed an aspect library, called EHSafetyRAC,
that can be added to any Java-based RAC in order
to ensure that contract violations, regardless of the
exception handling contexts present on the target ap-
plications, are signaled;

• we applied the proposed solution to different Java-
based RACs and assessed the effectiveness of our ap-
proach using a fault injection technique; our prelim-
inary results show that EHSafetyRAC provides effec-
tive support for RACs.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a short discussion on the limitations of the
contemporary runtime assertion checkers for Java-like pro-
grams under some contexts of exception handling. Section
3 presents the supporting ideas of the proposed approach
and how aspect-oriented concepts can be used to concretize
these supporting ideas. Section 4 summarizes our experi-
ence of applying the proposed solution to five different JML
RACs. Finally, Section 5 presents our conclusions and di-
rections for future work.

2. CHARACTERIZING THE INTERPLAY
OF DBC AND JAVA EH MECHANISM

In order to support the reasoning about the interplay be-
tween specific exception handling contexts and contempo-
rary RACs, we present the main characteristics of the Java
exception handling mechanism (Section 2.1) and some sce-
narios that may negatively affect RACs (Section 2.2).

2.1 Java Exception Handling
In Java, try blocks define exception handling contexts,

catch blocks define the exception handlers, and finally blocks
define clean-up actions — executed whether or not excep-
tions are raised [5]. Exceptions are represented in a hier-
archical structure, as illustrated in Figure 1. According to
this structure every exception is an instance of the Throwable

class. The user defined exceptions can be represented as a
checked (extends Exception) or an unchecked exception (ex-
tends RuntimeException). By convention an Error represents
an unrecoverable condition; often a JVM-related problem.

Throwable

Exception Error

RuntimeException

Figure 1: Java Exception Type Hierarchy.

> ajmlrac Example1
Exception in thread " main " org . jmlspec s . a jmlrac .

runtime . JMLInte rna lPrecond it ionError : by method
Example1 . decrypt regard ing s p e c i f i c a t i o n s at

F i l e " Example1 . java " , [sp e c c a se] : l i n e 2 ,
cha rac t e r 22 (Example1 . java : 2) , and

by method Example1 . decrypt regard ing code at
F i l e " Example1 . java " , l i n e 4 (Example1 . java : 4) ,
when
’key ’ i s 10
’ access\ _code ’ i s 36

. . . more

An exception is raised by a method when an abnormal
computation state is detected. In Java, whenever an excep-
tion is raised inside a method that cannot handle it, such
an exception is signaled to the caller, and the search for the
handler continues along the dynamic invocation chain un-
til a handler is found. This way of binding exceptions with
handlers based on the call chain is said to increase software
reusability. Hence, the invoker of an operation can handle
the exception in a larger context. Each handler is attached
to a protected region (e.g. method, blocks of code) and asso-
ciated with the exception type, which specifies the handling
capabilities — i.e., which exceptions can handled. When an
exception is signaled, it can be subsumed into the type asso-
ciated with a handler, only if the exception type associated
with the handler (i.e. the handler type) is a supertype of
the type of caught exception.

2.2 Fault Model
This section presents a fault model that defines a set of

types of faults that can happen on the interplay between
Java exception handling mechanism and RACs (this fault
model is also known as exception handling antipatterns [13]).
Such faults can be manifested as a failure on the execution
of a target application and consequently discard contract
violation exceptions. They are: (i) unintended exception
subsumption; (ii) exception swallowing, and (iii) exception
overriding. This fault model defines the types of faults con-
sidered by our recovery approach. These faults can acciden-
tally discard contract violation exceptions [15, 3]. Each fault
type is described next based on a simple example.

Consider a method called decrypt, whose first argument is
a key and the second one is a special access code, which de-
termines whether one is allowed to use decryption. For sim-
plicity, let us assume that the access code argument should
be an integer below 10. In JML 1 [12], such a method could
be specified as follows [8]:

1We use JML for simplicity. However, any design by con-
tract approach can be used to the following examples be-
cause the effect will be the same.

1 public void sneakyMethod() {
2 try {
3 int r = 36 ;
4 decrypt (key , r) ;
5 }

6 catch (Error e){

7 }

8 }

9 public void sneakyMethod() throws E {
10 try {
11 int r = 36 ;
12 decrypt (key , r) ;
13 }

14 finally{

15 throw new E();

16 }

17 }

18 public void sneakyMethod() {
19 try {
20 int r = 36 ;
21 decrypt (key , r) ;
22 }

23 finally{

24 return;

25 }

26 }

Figure 2: Examples categories of exception handling antipatterns [13] which cause the existing RAC ap-
proaches to fail report runtime violations [8].

//@ requires ac c e s s c ode < 10 ;
public void decrypt (int [] key , int ac c e s s c ode){ . . .}

JML annotation comments start with an at-sign(@). Pre-
conditions are introduced by the keyword requires. In this
case, the precondition of method decrypt states that the
access code must be less than 10.
A success scenario. Consider a client method denoted
by sneakyMethod that calls the method decrypt [8]. Also,
assume we have compiled our example including its client
code [8] by using the JML RAC compiler ajmlc [16]:

public void sneakyMethod(){
int r = 36 ;
decrypt (key , r) ;

}

Hence, any attempt to pass an access code that is out-of-
range must always raise a JML RAC error which stops the
program’s execution:
Unintended Exception subsumption. This is a well-
known problem [3] of poorly designed exception handling
code. It happens when the declared type in a handler is a
supertype on the exception hierarchy and mistakenly catches
an exception of a subtype. Figure 2 illustrates an example of
an unintended exception subsumption (lines 1−8). Since the
method decrypt is used with illegal arguments, its execution
should finish abruptly by throwing a JML precondition er-
ror. However, the Java virtual machine would not signal this
runtime error, since such JML precondition error is caught
(subsumed) by a handler (which targets java .lang.Throwable).
Exception overriding. This fault is related to the abil-
ity of a handler or finally block to throw another excep-
tion, substituting the original exception by the new one [3].
In this scenario we say that it overrides the exception that
was initially thrown. Figure 2 presents an example where
the method sneakyMethod terminates abruptly by throwing
a checked exception of type E (lines 9−17). The problem
is that the exception is thrown from within a finally block
(lines 14−16). Thus, the JML precondition error thrown by
the illegal call to the decrypt method is later overridden by
another exception E (line 15).
Exception swallowing. Such problem happens when an
exception is caught without being adequately handled (by
logging or presenting a warning to the user). Figure 2 il-
lustrates an example of exception swallowing (lines 18−26).
After a JML precondition error is thrown from within the
try block (lines 19−22), the finally block (lines 23−25) per-
forms a return statement (line 24). As with the return

statement, any break or continue statement would have a
similar effect. Such problem can also happen when a con-
tract violation error is subsumed by an unintended handler

problem, and no adequate handling is given to it (as in the
example on the left-hand side of Figure 2).

3. PROPOSED APPROACH
This section presents an overview of our approach that

leverages aspect-orientation to implement the recovery ac-
tions needed for RACs to work in a consistent way. We also
give an overview of the main concepts of aspect-oriented
programming (AOP) [10]

3.1 Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) [10] proposes an

approach for improving the separation of concerns in soft-
ware design and implementation. It proposes a new ab-
straction, called Aspect, to capture concerns that cannot be
easily expressed by the elements of traditional decomposi-
tion approaches (e.g., classes, procedures). Such concerns
are usually spread over several system modules and tan-
gled with other concerns. Some examples of such concerns
are logging,monitoring, transaction management and secu-
rity. AspectJ [11] is currently the most used aspect-oriented
programming language. It incorporates aspect-oriented soft-
ware development concepts into the Java programming lan-
guage. The main concepts are the following: (i) join points
– well-defined locations within the base code where an as-
pect can compose with the application (e.g. method calls,
method execution); (ii) pointcuts – a collection of join points;
and (iii) advice – a special method-like construct consisting
of instructions that execute before, after, or around a join
point. The around advice executes in place of the indicated
join point, which allows the aspect to replace a method.

3.2 Contract Violations Vs Application-Specific
Exceptions

Although they share the same type hierarchy, contract vi-
olations and application specific exceptions should be treated
differently inside the applications. It should not be allowed
for the application to handle contract violation errors or
exceptions. Since a contract is violated, the result of the
computation cannot be trusted. Regarding the exceptions
signaled by RACs (contract violations), we argue that as the
computation reaches an inconsistent state, such exceptions
should be signaled to the system entry point and terminate
the program execution. The program’s execution might be
stopped since there is no way of guaranteeing the result cor-
rectness. In our approach whenever a contract violation is
signaled by a RAC, it reaches the program entry point. This
solution is supported by aspect-orientation as detailed next.

1 public abstract aspect EHSafetyRAC {
2 // au x i l i a r y f i e l d that s to re s a RAC error of the program execut ion
3 private Throwable c on t rac tV io l a t i on = null ;
4
5 // ab s t rac t pointcuts
6 private pointcut monitor ingTargets () ;
7 protected abstract boolean i sExcept ionMoni torab le (Throwable e) ;
8
9 // events under monitoring

10 private pointcut exceptionOrErrorCreated () : ca l l (RuntimeException+.new(. .)) | | ca l l (Error+.new(. .)) ;
11 private pointcut monitor ingContext () : mon i tor ingTargets () && !within (EHSafetyRac+);
12
13 //monitor ing c on t rac t v i o l a t i o n s
14 after () returning (Throwable e) : exceptionOrErrorCreated () && cflow (monitor ingContext ()) {
15 i f (this . i sExcept ionMoni torab le (e) && con t rac tV io l a t i on == null){
16 con t rac tV io l a t i on = e ;
17 }
18 }
19 after () : monitor ingContext () {
20 this . r e throwContrac tVio lat ion () ;
21 }
22 // au x i l i a r y method
23 private void re throwContrac tVio lat ion () {
24 . . .
25 }
26 }

Figure 3: The EHSafety code snippet.

3.3 Monitoring and Enforcing Contract Vio-
lations

The first supporting idea of our approach was to keep
track (monitor) every contract violation that is thrown in-
side an application. In a conventional setting, the moni-
toring code is scattered across multiple modules and tan-
gled with other application concerns. In order to avoid
scattered and tangled code, our approach employs aspect-
oriented programming techniques to modularize the moni-
toring concern. Thus, it entirely decouples the monitoring
code from the business code. The monitoring code is able
to crosscut specific points (join points) of a system, such as
method and constructor executions.

The aspect-oriented monitor pattern [2] was originally
conceived for tracking operation performance and thread
status. In our approach we extended the notion of aspect-
oriented monitoring to gather and filter information about
contract violation exceptions (i.e. instances of Java Error or
RuntimeException classes) from a set of join points.

Besides monitoring the contract violation errors, our ap-
proach ensures that the exceptions detected by RAC reach
the program’s entry point and stop the program’s execution.
As with the monitoring concern, the enforcement concern
was also implemented by an aspect, as detailed next.

3.4 EHSafetyRac Implementation
The main design decision of our solution was the defini-

tion of an aspect library to implement the monitoring and
enforcement behaviors to the problems discussed in previous
section. Although prebuilt aspect libraries are a relatively
new reuse artifact, several useful collections have already be-
come available, including: the Spring AOP aspect library 2,
the Glassbox Inspector 3, the JBoss Cache 4, and GOF pat-
terns aspect library [6]. Such libraries typically implement
crosscutting functionalities (e.g., performance monitoring,

2http://www.springframework.org.
3https://glassbox-inspector.dev.java.net.
4http://www.jboss.org/jbosscache/.

security, and transaction management) that would be spread
in many application modules otherwise [10, 11].

Figure 3 illustrates the partial code of the contract mon-
itoring and enforcement aspect (lines 1−26). As observed,
the aspect contains one abstract pointcut and one abstract
method to be implemented by concrete subaspects defined
to specific applications and RACs. The abstract pointcut
called monitoringTargets (line 6) denotes the set of points in
the application execution (join points) under contract moni-
toring and enforcement. Hence, each application should pro-
vide a concrete implementation to it. The abstract method
isExceptionMonitorable (line 7) is responsible for identifying
whether or not a thrown exception is an instance of con-
tract violation error (or exception). Thus, each specific RAC
should provide a concrete implementation for such method.

This aspect keeps track of every contract violation that
happens inside the application (lines 10−15). It is responsi-
ble for monitoring every new instance of a RuntimeException

or Error that is created inside the application. Since this ad-
vice is an after returning advice, it is triggered only if the
execution of the intercept constructor ends normally. Hence,
if any contract violation happens inside the application, it
is stored and re-signaled until it reaches the program entry
point. This solution simulates a different exception handling
mechanism based on program termination.

4. EVALUATION
This section summarizes our experience using EHSafe-

tyRAC aspect library (Section 3) to avoid the negative ef-
fects of the fault model, previously discussed, on current
Java-based runtime assertion checkers (RACs). The pro-
posed solution was applied to five Java-based contempo-
rary RACs: (i) JML/jmlc [1], (ii) JML/ajmlc [16], (iii)
JContractor 5, (iv) Contract Enforcement Aspect Pattern
(CEAP) [17], and (v) Jose [4]. The main goal of the study
was to assess whether a programmer using the EHSafetyRAC
can prevent contract violations from being discarded.

5http://jcontractor.sourceforge.net/index.html.

The target system used in this study was the Health-
Watcher [3] system, a web-based application that allows cit-
izens to register complaints regarding issues in health care
institutions. Basically, the HealthWatcher system is struc-
tured according to the layer architectural pattern, composed
by three layers: GUI, Business, and Data.

We compared the following two use case scenarios: (i) the
use of the original RACs to check a set of DbC contracts
added in the target system and (ii) the use of the improved
version of each RAC (combined with the proposed EHSafe-
tyRAC solution) which checks the same contracts.

The code snippet below was extracted from the business
layer. It illustrates the piece of code of the Facade class
responsible for implementing the“Insert Employee”use case.
This method is responsible for inserting a new Employee in
the system. Actually, this method delegates this task to a
method on the Data Layer (line 4).

1 public void i n s e r t (Employee employee) . . . {
2 try {
3 getPm () . beg inTransac t ion () ;
4 employeeRecord . i n s e r t (employee) ;
5 getPm () . commitTransaction () ;
6 } catch (Objec tAl readyInse r tedExcept ion e) {
7 getPm () . r o l l b ackTran sac t i on () ;
8 throw e ;
9 } catch (ObjectNotVal idException e) {

10 getPm () . r o l l b ackTran sac t i on () ;
11 throw e ;
12 } catch (Transac t ionExcept ion e) {
13 getPm () . r o l l b ackTran sac t i on () ;
14 throw e ;

15 } catch (Exception e) {

16 getPm().rollbackTransaction();

17 }

18 }

Note that in order to successfully insert a new employee in
such a system, a user name, login, and password should be
provided. Any missing employee information violates the
use case requirement. Hence, in order to prevent any ma-
licious client from bypassing such a validation (leading to
inconsistent data in the system), three basic preconditions
are added to the insert method from the Data layer (line
4). The code snippet below illustrates the JML contracts
defined to represent such preconditions:

1 //@ requires ! employee . getLogin () . equa l s ("") ;
2 //@ requires ! employee . getName () . equa l s ("") ;
3 //@ requires ! employee . getPassword () . equa l s ("") ;
4 public void i n s e r t (Employee employee) { . . .}

Hence, any attempt to insert a new employee with miss-
ing required data, should result in a contract violation that
should be presented to the user. However, if the developer is
using CEAP [17] or Jose [4] RACs, such contract violation
message is never presented to the user. The reason is the
following: when a contract violation occurs in such RACs,
a RuntimeException is thrown. Hence, if any runtime excep-
tion, different from the ones listed in the try−catch clause
is subsumed by the general catch Exception clause defined
in the Business layer (lines 15−17). As a result, any precon-
dition violation raised in this context is mistakenly caught
by such general handler. This fault in source code is related
to the first EH antipattern depicted in Figure 2. In order to
overcome such problem we combined every RAC with our
EHSafetyRAC solution. It was responsible for avoiding the
contract violations exceptions to be caught by unintended
handlers. Such problem does not occur in JML/jmlc [1] and

Table 1: Faults detected when performing RAC with
Catch Exception (CE) and Catch Throwable (CT).

RAC Technique Subsumption Overriding Swallowing
CE CT CT CT

JML/jmlc X x x x

JML/jmlc with EHSRAC X X X X

JML/amlc X x x x

JML/ajmlc with EHSRAC X X X X

JContractor X x x x

JContractor with EHSRAC X X X X

CEAP x x x x

CEAP with EHSafetyRAC X X X X

Jose x x x x

Jose with EHSafetyRAC X X X X

JML/ajmlc [16] RACs because they throw an Error that is
not subtype of Exception.

Hence, to further investigate the effectiveness of EHSafe-
tyRAC aspect library we used a fault injection [18] strategy.
We manually injected instances of the each one of the excep-
tion handling faults described in the fault model, and created
subaspects of EHSafetyRAC to each one of the Java-RACs
involved in the study. The code snippet bellow illustrates
the EHSafetyRAC for JML/jmlc and JML/ajmlc RACs:

1 public aspect EHSafetyRACForJML extends EHSRAC{
2 protected pointcut monitor ingTargets () :
3 execution (execution (public ∗ hw . . ∗ .∗ (. .)) ;
4 protected boolean isExcepMonito (Throwable e) {
5 return (e instanceof JMLAssertionError) ;
6 }
7}

Line 2 denotes the definition of the (inherited abstract) point-
cut which intercepts the execution of every public method
of HealthWatcher system (from which we wanted to recover
any contract violation when it occurs). Lines 4−10 depict the
implementation of the (inherited abstract) method denoted
by isExceptionMonitorable. It is responsible for identifying a
particular contract exception thrown by a particular RAC.
In this case, the JML contract violation is subtype of the
JMLAssertionError type (line 7).

Table 1 illustrates the results of our fault injection study.
As expected, all the RAC approaches fail to properly re-
port the precondition violation. This happens because the
injected catch(Throwable) catches both runtime exceptions
or errors. As a result, all the runtime exception and Error-
based RACs fail to report the precondition violation.

The combination between the RAC techniques with their
corresponding EHSafetyRAC solutions recover the precon-
dition violation raised during a mal-formed query to the
method insert (of the business layer). We could observe that
through this combination, the subsumed precondition was
indeed recovered and properly signaled to the user. These
results indicate that our approach based on EHSafetyRAC
improved any kind of runtime assertion checker regarding
exception safety propagation.

5. DISCUSSIONS
Concurrent Programs. In relation to concurrent pro-
grams, if an unhandled exception occurs in a separate thread,
only that thread is terminated. In addition, if any thread
is blocked by a monitor that the failing thread holds, the
blocked threads will be free to acquire the monitor and ac-
cess a potentially inconsistent part of the program. Finally,
if a thread is waiting for a notification from the failed thread,
the former will be blocked forever. Our approach currently
does not address these problems. The main complicating

factor, in this case, is that the exception handling mech-
anism of Java does not provide support for handling ex-
ceptions in concurrent programs. In the future, we intend
to devise solutions to circumvent this limitation of Java’s
exception handling mechanism, to guarantee that contract
violations do not leave the system in an unsafe state.
Advances in EH Mechanisms. A number of authors
have identified problems with modern exception handling
mechanisms and proposed solutions. Some of them have a
strong connection with the approach we propose. For ex-
ample, Jacobs and Piessens [9] have proposed failboxes to
guarantee that code that depends on the successful comple-
tion of an operation is not executed if the operation fails.
We use specific exceptions and guarantee that they are not
accidentally caught to achieve the same goal. On the one
hand, our approach does not require any modifications to
the underlying programming language. On the other hand,
failboxes provide stronger guarantees, allowing applications
to resume execution with only partial functionality, while
ensuring that failed parts are not used.

6. FINAL REMARKS
Aspect-oriented programming definitely is a promising tech-

nique for building dependable software. We have found that
AOP employed as a error recovery technique has shown to
be quite useful for developers. The EHSafetyRAC approach
can recover errors (contract violations) detectable by run-
time assertion checking even if such violations are hidden
or overridden by programs due to the use of practices such
as exception handling antipatterns.An appealing property
of our approach is that it is neutral with respect to a run-
time assertion checking technology. However, we have not
yet investigated the promise of EHSafetyRAC with other
aspect-oriented (AO) languages with different mechanisms
than ones of AspectJ. In the near future, we intend to in-
vestigate other AspectJ-like languages to ensure that the
suitability of our approach can be used by other AO lan-
guages. Our experience to date with EHSafetyRAC is lim-
ited to one system, HealthWatcher [3]. However, we argue
that any other real system, with the aforementioned kinds of
exception handling antipatterns, can benefit of the proposed
error recovery approach. Hence, we expect that developers
can apply our aspect-oriented recovery approach to help de-
veloping dependable software. The EHSafetyRAC technique
discussed in this paper is the first initiative to automatically
improve dependability of any runtime assertion checker of
programs which contain exception handling antipatterns.

Acknowledgements
This work has been partially supported by the National In-
stitute of Science and Technology for Software Engineering
(INES), funded by CNPq and FACEPE, grants 573964/2008-
4 and APQ-1037-1.03/08. The work of Ricardo Lima, Rober-
ta Coelho, and Fernando Castor were partially supported by
CNPq under grants No. 314539/2009-3, No.620132/2008-6,
and (308383/2008-7 and 475157/2010-9), respectively. Hen-
rique Rebêlo is also supported by FACEPE under grant No.
IBPG-1664-1.03/08. The work of Leavens was partially sup-
ported by a US National Science Foundation grant, CNS
08-08913.

7. REFERENCES
[1] L. Burdy et al. An overview of JML tools and

applications. Int. Journal on Soft. Tools for Tech.
Transfer (STTT), 7(3):212–232, June 2005.

[2] R. Coelho et al. The application monitor aspect
pattern. In Proceedings of PLoP, PLoP ’06, pages
13:1–13:10, New York, NY, USA, 2006. ACM.

[3] R. Coelho et al. Assessing the impact of aspects on
exception flows: An exploratory study. In Proceedings
of ECOOP, ECOOP ’08, pages 207–234, Berlin,
Heidelberg, 2008. Springer-Verlag.

[4] Y. A. Feldman et al. Jose: Aspects for design by
contract80-89. IEEE SEFM, 0:80–89, 2006.

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha.
Java(TM) Language Specification, The (3rd Edition)
(Java (Addison-Wesley)). Addison-Wesley, 2005.

[6] J. Hannemann and G. Kiczales. Design pattern
implementation in java and aspectj. SIGPLAN Not.,
37:161–173, November 2002.

[7] C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10):576–580, 1969.

[8] M. Huisman. On the interplay between the semantics
of java’s finally clauses and the jml run-time checker.
In Proceedings of FTfJP, FTfJP ’09, pages 8:1–8:6,
New York, NY, USA, 2009. ACM.

[9] B. Jacobs and F. Piessens. Failboxes: Provably safe
exception handling. In Proceedings of ECOOP,
ECOOP’09, pages 470–494, Berlin, Heidelberg, 2009.

[10] G. Kiczales et al. Aspect-oriented programming. In
Proceedings of ECOOP, number 1241 in ECOOP ’97,
pages 220–242. Springer-Verlag, June 1997.

[11] G. Kiczales et al. Getting started with aspectj.
Commun. ACM, 44:59–65, October 2001.

[12] G. T. Leavens et al. Preliminary design of JML: A
behavioral interface specification language for Java.
ACM SIGSOFT Software Engineering Notes,
31(3):1–38, Mar. 2006.

[13] T. McCune. Exception handling antipatterns. Article,
2006.

[14] B. Meyer. Applying “design by contract”. Computer,
25(10):40–51, 1992.

[15] R. Miller and A. R. Tripathi. Issues with exception
handling in object-oriented systems. In ECOOP, pages
85–103, 1997.

[16] H. Rebêlo et al. Implementing java modeling language
contracts with aspectj. In Proc. of the 2008 ACM
SAC, pages 228–233, New York, NY, USA, 2008.

[17] H. Rebêlo et al. The contract enforcement aspect
pattern. In Proc. of the 2010 SugarLoafPLoP, pages
99–114, 2010.

[18] J. M. Voas and G. McGraw. Software fault injection:
inoculating programs against errors. John Wiley &
Sons, Inc., New York, NY, USA, 1997.

A. Online Appendix
We invite researchers to replicate our preliminary study.
Source code of the target system and their specification us-
ing five DbC approaches with and without EHSafetyRAC
are available at: http://cin.ufpe.br/~hemr/ftfjp11.

