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ABSTRACT
In Java, explicit casts are ubiquitous since they bridge the
gap between compile-time and runtime type safety. Since
casts potentially throw a ClassCastException, many program-
mers use a defensive programming style of guarded casts. In
this programming style casts are protected by a preceding
conditional using the instanceof operator and thus the cast
type is redundantly mentioned twice. We propose a new
typing rule for Java called Guarded Type Promotion aimed
at eliminating the need for the explicit casts when guarded.
This new typing rule is backward compatible and has been
fully implemented in a Java 6 compiler. Through our ex-
tensive testing of real-life code we show that guarded casts
account for approximately one fourth of all casts and that
Guarded Type Promotion can eliminate the need for 95 per-
cent of these guarded casts.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages, Design

Keywords
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1. INTRODUCTION
When teaching the Java instanceof expression one might, to
illustrate a common use case, present an example like

if (o instanceof Foo) {
((Foo)o).doFooStuff();

}

and be met with the response: “Why do we need to say that
o is of type Foo when we have just gotten a ‘yes’ from asking
the exact same question?” And yes, why do we?
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The example is an instance of a programming style we call
guarded casts in which a cast is preceded by a conditional to
ensure the cast validity. Since such casts contain redundant
type information they are not only tedious to write but also
subject to errors.

We present a new backwards compatible typing for Java
aimed at eliminating the need for these redundant casts.
Our approach is to extend Java with a path sensitive typ-
ing of local variables and final fields called Guarded Type
Promotion. We use the type information provided by the
runtime checks to promote the types of such expressions
thus enabling a more precise typing without the need for
further annotations.

Guarded Type Promotion only targets casts that have
been explicitly guarded, like in the previous example. This
is because we do not want to support casts in general but
only those part of this defensive programming style. For
guarded casts, however, Guarded Type Promotion not only
eliminates the need for the redundancy but also ensures the
cast validity statically.

Guarded Type Promotion is similar to type inference as
for instance proposed by Peter von der Ahé [3]. One could
argue that it is just a type inference that did not go all way;
that the rules should and could just as well handle code like

Object o = "foo";
o.trim(); // o promoted to String by "foo"

Guarded Type Promotion is not just an inferior type infer-
ence, it is intentionally not using all type knowledge present
within the code. The main difference between type infer-
ence and Guarded Type Promotion is that the programmer
through a guard expresses the intent to couple the code with
a more specific type than the static type implies. The use
of generalized types is a key component to decoupling and
the inference of a more precise type for all expressions would
counter this meta-pattern. For instance, an important rea-
son for choosing a typing like

List〈String〉 list = new LinkedList〈String〉();

over
LinkedList〈String〉 list = new LinkedList〈String〉();

is the exchangability of implementation that the generaliza-
tion enables and Guarded Type Promotion supports this.

The rest of this paper is structured as follows: In Sec-
tion 2 we give an overview of casts in Java. In Section 3 we
present the data-flow analysis behind the promotion. Some
of the transfer functions are shown in Section 4 and in Sec-



tion 5 we show how the promotion is integrated into Java.
Experiments are presented in Section 6 and in Section 7 we
discuss related and future work.

2. CASTS
To get an overview of how casts occur in Java we categorize
the explicit casts into four groups according to their runtime
type safety.

2.1 Guarded Casts
The first group of casts is the guarded casts where the pro-
grammer performs a runtime check before casting and thus
ensures the validity of the cast by guarding it. The guarding
of a cast can be done using the instanceof expression or by
using the .class constants and the Class〈?〉 values returned
by Object.getClass(). The use of the guarded cast program-
ming idiom falls into 4 categories that are all targeted by
Guarded Type Promotion.

An if-guarded cast is a cast which is preceded by a runtime
check of the target against the same type. For instance
as in the code below where the cast (Foo)o is guarded by
the preceding o instanceof Foo expression, possibly using the
ternary operator ? : or lazy operators.

if (o instanceof Foo) {
Foo foo = (Foo)o;
. . .

}

if (o instanceof Foo &&
((Foo)o).isBar()) {

. . .
}

Bar bar = o instanceof Foo ? ((Foo)o).getBar() : null;

A dead-if-guarded cast is a cast where the guard uses reach-
ability to ensure the validity. For instance

if (!(o instanceof Foo)) {
return;

}
Foo foo = (Foo)o;
. . .

where the cast is unreachable if o is not a Foo instance.
An ensure-guarded cast is a cast in which both paths

through a conditional result in the target having the in-
tended type. For instance

if (!(o instanceof Foo)) {
o = new Foo();

}
Foo foo = (Foo)o;
. . .

where o is intended to have type Foo and where the if state-
ment ensures just this.

A while-guarded cast is a cast in which a loop ensures the
intended type. For instance

while (o != null && !(o instanceof Foo)) {
o = o.parent();

}
Foo foo = (Foo)o;
. . .

where the parent() relation of o is traversed until a Foo in-
stance or null is found.

2.2 Semi-Guarded Casts
Semi guarded casts are guarded by the semantics of the pro-
gram but the cast validity is invisible at the type level. For
instance

Foo foo = ...
if (foo.isBar()) {

Bar bar = (Bar)foo;
. . .

}

where the call to isBar() ensures that foo is an instance of
Bar. Since semi-guarded casts are invisible at the type level
these casts are not targeted by our type promotion.

2.3 Unguarded Casts
Unguarded casts are casts whose validity is not ensured lo-
cally. These come in many flavors. For instance unchecked
casts or casts resulting from the use of raw types, like in

List list = . . . { // a list of Foo elements
for (Object o : list) {

Foo foo = (Foo)o;
. . .

}

where each retrieved element of the list of Foo elements need
to be cast before use.

The validity of many unguarded casts is ensured by in-
variants that are known to the programmer but not ensured
locally. A classic example of this is the casting of a call to
clone() to the type of the receiver, for instance

Calendar copy = (Calendar)calendar.clone();

where the return type is known to be of type Calendar despite
its signature, Object clone().

A notable kind of unguarded casts are invalid casts which
are guarded casts gone bad. Like in the example below, this
occurs when the instanceof type and the cast type differ.
Invalid casts are thus caused by the redundancy of guarded
casts.

Object o = . . .
if (o instanceof String) {

// a String instance can not be an Integer instance
Integer i = (Integer)o;
. . .

}

During our experiments, our type promotion revealed 4 such
invalid casts.

2.4 Safe Casts
The last group is the safe casts which are casts that cannot
cause an exception at runtime. The only safe casts are up-
casts which are casts to super types. When such a cast is not
needed for instance for disambiguating overloaded methods,
an upcast is also often referred to as an unnecessary cast.

For completeness we mention primitive conversions like
(char)42 or boxing conversions like (Integer)42 which despite
their syntactical likeness are not casts but conversions. For
this reason these are not included in the figures presented
in Section 6.

3. TYPE PROMOTION
Guarded Type Promotion is a path sensitive typing. This
means that it contains an intraprocedural data-flow analy-
sis which collects type information for certain expressions.
This information enables the computation of a promoted type
which is more specific than the static type of the expression
while ensuring that the dynamic type is always a subtype of
the promoted type. We refer to the static type as the de-
clared type since the promoted type is also statically known.



targetOf (v) = Local (v)

targetOf (e) = t

targetOf ((e)) = t

targetOf (e) = t

targetOf ((T)e) = t

targetOf (e1) = t

targetOf (e1 = e2) = t

targetOf (e) = t f final
targetOf (e.f) = Field (t, f)

f final
targetOf (T.f) = StaticField (T, f)

Figure 1: Target Rules

Targets.
If the guarded expression is a local variable access that has
not been updated since the guard or a final field access then
it is sound to use the promoted type. If the expression is
a non-final field access, an array access, or a method in-
vocation then it is unsound to use the promoted type. A
non-final field or an array might be updated non-locally by
a method invocation or even a different thread and a method
invocation might return different values on each invocation.

To increase the syntactical flexibility of the analysis, ex-
pressions like for instance o, (o), and o = e must be regarded
as the same target; a test of any of these is a test of the value
of o. The promotable expressions are therefore mapped into
a target of the following grammar by the rules in Figure 1.

t ::= Local (v) local variable v
| Field (t, f) field f on target t
| StaticField (T, f) static field f on type T

The Promotion Analysis.
The type promotion analysis is inspired by the reachabil-
ity and definite assignment analyses defined in §14.21 and
§16 of [5]. For each statement and non-boolean expression
the analysis computes two type maps B�·� and A�·� con-
taining the promoted type information before and after the
statement/expression, respectively, and for each boolean ex-
pression it computes three type maps B�·�, At�·� and Af �·�
containing the promoted type information before the expres-
sion, after the expression when true and after the expression
when false, respectively.

The runtime type information available in Java does not
include the type arguments but merely the type declara-
tion of which an object is an instance. Therefore, a guard,
regardless of whether we are using instanceof, getClass(),
or .class, only provides declarational information about the
runtime type of a value. A declaration d of a type τ , denoted
declOf (τ ) is thus similar to raw types with for instance
declOf (List〈String〉) = List and two declarations, d1 and d2,
have the natural ordering d1 � d2 if d1 inherits from d2. We
define the type of a declaration d, denoted typeOf (d), as the
instantiation of d in which all type arguments are unbounded
wildcards. For instance typeOf (List) = List〈?〉.

A type map, m, is a map from targets to target info con-
structs.1 A target info construct i = targetInfo(τd, H, D)
1We write m \ {t �→ i} for the map m in which the mapping
for t is replaced by t �→ i and m \ {t �→ •} for the map m in
which the mapping for t is removed.

holds 3 parts of information. First the declared type, τd,
of the target for convenience. Secondly a set of type holder
constructs, H , which contain type information for disjoint
paths. For instance that a target is either a String instance,
an Integer instance or null. Thirdly a set of declarations of
interest, D, which is the declarations that the target has
been tested against.

A type holder h = typeHolder (τd, Dt, Df ) contains type
information for one possible path. The declared type, τd, is
used to calculate the promoted type of the type holder. The
set Dt is called the set of true declarations and is the set of
declarations that the target is known to be an instance of,
i.e. a non-null subtype of, on this path. The set Df is called
the set of false declarations and is the set of declarations that
the target is known not to be an instance of. For instance a
type holder typeHolder (Object, {Number}, {Integer}) tells us
that the target is known to be an instance of Number but
not an instance of Integer.

The Promoted Type.
The promoted type of a target in the type map mapped to
targetInfo(τd, H, D) is computed as the least upper bound,
lub, of the types of its type holders:

typeOf (targetInfo(τd, H, D)) = lub({typeOf (h)|h ∈ H})

The calculation of the type of a type holder is quite compli-
cated. For brevity it is shown here in a simplified form:

typeOf (typeHolder (τd, Dt, Df )):
if ∃d ∈ Df . declOf (τd) � d

return ⊥
return glb({τd} ∪ {typeOf (d) | d ∈ Dt})

If the target is known not to be of its declared type then
the type is the null-type, ⊥. Otherwise the glb function
computes the greatest lower bound of the declared type and
the types of the true declarations. The promoted type is
thus always a subtype of the declared type.

The actual typeOf function on type holders can also infer
type arguments from the declarations. Consider for instance
the following code:

interface A〈X〉 {}
interface B extends A〈B〉 {}
interface C〈X〉 extends A〈X〉 {}

Object o = . . .
if (o instanceof C) { // o has promoted type C〈?〉

if (o instanceof B) { // o has promoted type C〈B〉 & B

Here the type argument of C is gradually inferred by the
information provided by C and B.

The Join Function.
The join function computes the least upper bound of two
type maps. It is defined as

join(m1, m2):
return {t �→ join(i1, i2) | t �→ i1 ∈ m1, t �→ i2 ∈ m2}

where the least upper bound of two target info constructs is
join(targetInfo(τd, H1, D1),typeHolder (τd, H2, D2)):

return targetInfo(τd, H1 ∪ H2, D1 ∪ D2)

The join function is used to merge two paths in the data-
flow analysis and for a boolean expression e we thus define its
after map, for when we are not taking its value into account,



as A�e� = join(At�e�, Af �e�).

The Promote Function.
New type information for a target is stored in the type map
through the promote function which is defined as follows

promote(m,t,Dt,Df ,τd):
if t �→ i ∈ m then // promote existing target

return m \ {t �→ promote(i, Dt, Df )}
else // add new promotion

h ← typeHolder(τd, Dt, Df )
return m ∪ {t �→ targetInfo(τd, {h}, Dt ∪ Df )}

with the promotion of a target info construct defined as
promote(targetInfo(τd, H, D),D′

t,D′
f ):

for typeHolder(τd, Dt, Df ) ∈ H

hi ← typeHolder(τd, Dt ∪ D′
t, Df ∪ D′

f )
H′ ← {hi | hi is not invalid}
if |H′| > 0 // combine valid paths

return targetInfo(τd, H′, D ∪ D′
t ∪ D′

f )
else // create assumed path

// mark as erroneous
h ← typeHolder(τd, D′

t, D′
f )

return targetInfo(τd, {h}, D ∪ D′
t ∪ D′

f
)

The promotion of a target info attempts to combine the
new type information with that of all of its possible paths,
keeping only those paths that are not invalid. A type holder
is invalid if it contradicts itself, that is, if it for instance
requires the target to be both Integer and not Object, i.e.
both null and non-null at the same time, or for instance
requires the target to be both Integer and String at the same
time.

If no paths are valid, a target info construct assuming the
new type information is created. Since it represents an in-
valid state it is marked as erroneous. If a type map contains
erroneous target info after the data-flow analysis has reached
a fixed-point, an ‘unreachable code’ error is produced. Dur-
ing our experiments one such error was flagged, revealing a
sequence of contradicting guards.

4. TRANSFER FUNCTIONS
In this section we present the transfer functions for an inter-
esting subset of the Java constructs. Code examples involv-
ing most of these constructs are shown in Appendix A. For
brevity we denote the type maps of the construct in question
as A�·�, B�·�, etc.

• e instanceof τ

The instanceof expression is the primary source of promo-
tional information. For this we define the transfer function
as follows:

B�e� = B�·�
At�·� = promote(A�e�, targetOf (e), {declOf (τ )}, ∅)
Af �·� = promote(A�e�, targetOf (e), ∅, {declOf (τ )})

If the instanceof expression results in true at runtime, we
know that e is an instance of the declaration of τ and we
therefore promote the target of e with the set {declOf (τ )}
of true declarations. Otherwise, if the instanceof expression
results in false at runtime, we know that e is not an instance
of declOf (τ ) and we therefore promote the target of e with
the set {declOf (τ )} of false declarations.

• e1.getClass() == e2.getClass()
Another kind of guard is an expression where two calls to
the special Object.getClass() method are tested for equality.

B�e1� = B�·�
B�e2� = A�e1�

m = promote(A�e2�, targetOf (e1), {declOf (e2)}, ∅)
At�·� = promote(m, targetOf (e2), {declOf (e1)}, ∅)
Af �·� = A�e2�

If the result of such an expression is true, we know that the
two receiver expressions, e1 and e2, are instances of the same
declaration. In the At�·� map the true set of the target of e1
is therefore promoted with the declaration of e2, declOf (e2),
and vice versa. In the case of false we have no further knowl-
edge of the type of e1 and e2 since we only know that they
are instances of different but unknown types. Tests against
T.class expressions have a similar promoting transfer func-
tion.

• e == null
Test for nullness also promotes a target. This is necessary
to eliminate while-guarded casts. If e is null then its false
declarations are extended with {declOf (e)}, i.e. e is not an
instance of its declared type. If e is not null we instead
extend the true declarations with {declOf (e)}.

B�e� = B�·�
At�·� = promote(A�e�, targetOf (e), ∅, {declOf (e)})
Af �·� = promote(A�e�, targetOf (e), {declOf (e)}, ∅)

• e1 && e2

Similarly to the definite assignment analysis in Java the
transfer functions for &&, ||, and the conditional operator,
? :, take the conditional flow into account. For instance the
transfer function for && is defined as follows:

B�e1� = B�·�
B�e2� = At�e1�
At�·� = At�e2�
Af �·� = join(Af �e1�, Af �e2�)

• e1 = e2

To handle assignment soundly we must take into account
the side effects of the update of the target t of the left-hand
side expressions e1. Since for instance e1.f potentially has a
different value if the value of e1 is changed, we remove from
the type map all targets of which t is a proper subtarget.

B�e1� = B�·�
B�e2� = A�e1�

t = targetOf (e1)
m = A�e2� \ {t′ �→ • | t′ is a proper subtarget of t}

A�·� = reduce(m, t, typeOf (A�e2�))

For the target t itself we could soundly just discard the
promotion but we can do something better. Through the
reduce function defined below we set the promoted informa-
tion to be based on the most specific declaration between
the right-hand side type and declarations of interest found
in the target info.



reduce(m, t, d):
if t �→ targetInfo(τd, H, D) ∈ m then

D′ ← {d′ ∈ D | d � d′}
if |D′| > 0 // is the declaration of interest?

ht ← typeHolder(τd, D′, ∅) // t is an instance of d

hf ← typeHolder (τd, ∅, D′) // t is null
i ← targetInfo(τd, {ht, hf }, D)
return m \ {t �→ i}

else // discard
return m \ {t �→ •}

else
return m

For instance by using the combined knowledge that we are
interested in whether o is of type Foo and that the right-
hand side is an instance of Foo or null, we can keep the
partial promotion, that o is either a Foo instance or null,
which enables us to eliminate ensure-guarded casts.

• if (e) St else Sf

The if-then-else statement naturally propagates the condi-
tional information of At�e� and Af �e� to the then- and else-
statements, respectively. Furthermore we use the reachabil-
ity information of these substatements to determine the af-
ter map of the if-statement. If the then-statement completes
normally2, denoted C�St�, and the else-statement does not
complete normally then the after map of the if-statement is
the after map of the then-statement. Likewise in the oppo-
site case. If both the then- and the else-statements complete
normally, the after map is simply the join of the substate-
ments.

B�e� = B�·�
B�St� = At�e�
B�Sf � = Af �e�

A�·� =

⎧⎨
⎩

A�St� if C�St� and ¬C�Sf �

A�Sf � if ¬C�St� and C�Sf �

join(A�St�, A�Sf �) otherwise

• try S catch (T1 v1) S1. . . catch (Tn vn) Sn finally Sf

The transfer function for try-statements must soundly take
into account the many possible paths through a try-state-
ment. This is done by conservatively assuming that no new
promotional information is obtained through the try and
catch clauses and that the information for every updated
target must be removed. The transfer function is thus

B�S� = B�·�
B�Si� = B�·� \ {t �→ • | t ∈ targets(S)}
B�Sf � = B�·� \ {t �→ • | t ∈ targets(S, S1, · · · , Sn)})

A�·� = A�Sf �

where targets computes the set of all updated targets of the
given statements, which is simply the left-hand side targets
in the statements.

5. INTEGRATION INTO JAVA
If we were to design a new language, we could use the pro-
moted type as a primary source in type checking. Since
we are extending an existing language we cannot do this
without breaking compatibility. The linking of method and
constructor invocations and field accesses is based on the
static types of the receiver and arguments. If the static
2A statement completes normally if it does not return or
throw an exception.

types change, the linked target might change, thus changing
the semantics of existing code. For instance

void m(Foo foo) { . . . }
void m(Bar bar) { . . . }

Foo foo = . . .
if (foo instanceof Bar)

m(foo); // m(Bar) is linked

where the method m(Bar) is linked instead of m(Foo) by
the use of type promotion. What we do instead is to use
Guarded Type Promotion as a ‘Plan B’. If the type checking
of a construct fails using the declared types, we type check
the construct again using the promoted types.

While this ensures backward compatibility, since only cur-
rently untypeable programs will use the promoted types,
there is one issue that needs to be addressed. When the
static types change because Guarded Type Promotion is
needed, the linked target might change unexpectedly. Con-
sider for instance the following code.

void m(Bar bar, Foo foo) { . . . }
void m(Bar bar1, Bar bar2) { . . . }

Foo foo = . . .
if (foo instanceof Bar) {

m(foo, foo);
}

Here promotion is needed for the first argument in order to
type m(foo, foo) but as a side-effect the second argument is
promoted as well, making the linked method m(Bar,Bar) and
not m(Bar,Foo). Since this second promotion might be un-
intended, such a linking is considered ambiguous, requiring
an explicit cast of one of the arguments. In our experiments
only 2 invocations were considered ambiguous.

To make Guarded Type Promotion binary compatible [5]
casts are automatically inserted for the inferred promotions
in the generated .class files. If the casts were not inserted,
the class-file verifier would need to include some sort of type
promotion as well.

6. EXPERIMENTS
To test the effectiveness and precision of the Guarded Type
Promotion rules we have implemented these in a Java 1.6
compiler3. As test cases we have used the OpenJDK6 project
[7], 8 different Apache projects [4], and 11 various projects
including our extended Java compiler and active projects
from Google Code [2]. In total 5.2 MLOC containing >35000
casts.

By analysing the casts in these projects we have measured
the frequency of the 4 cast groups described in Section 2 and
the results are shown in Figure 2 and in the ‘Cast Group’
section of Table 1. As we can see, the percentage of guarded
casts varies greatly between individual projects, between 0%
and 65%, but on average guarded casts account for 24.3%
of all casts.

To test the precision of our type promotion rules, our
compiler has simulated the absence of casts to see how many
of the guarded casts that would be inferred. The results
are shown in the ‘Precision’ section of Table 1. Here we
see that 94.7% of the guarded casts were promoted. The
type promotion failed to infer the remaining casts for three

3Available at http://cs.au.dk/~jwbrics/java/
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Figure 2: Cast Group Frequency

% #
Cast Group Guarded 24.3 8624

Semi-Guarded 23.1 8220
Unguarded 46.7 16595
Safe 5.8 2076

Precision Promoted 94.7 8165
Alias 2.4 211
Dead 2.9 247
Try 0.0 1

Expression Type Promotable 87.8 7167
Field Access 6.5 529
Method Invocation 3.9 317
Array Access 1.9 152

Table 1: Experimental Results

reasons. 1) The guarded information is hidden in an alias
like in

boolean b = o instanceof Foo;
if (b) . . .

2) The guard is hidden by a dead method, which is a method
that does not complete normally, possibly given its argu-
ments. For instance

assertTrue(o instanceof Foo);
. . . (Foo)o . . .

where assertTrue does not complete normally given the ar-
gument false. 3) The guard is hidden by the inability to
detect the needed guarding paths through a try-statement.

As shown in the ‘Expression Type’ section of Table 1,
87.8% of the guarded casts are directly promotable, that is,
the guarded expressions are local variable or final field ac-
cesses. To be promotable the remaining expressions require
a rewriting like

if (foo.getX() instanceof Bar) . . .

into something like
X x = foo.getX();
if (x instanceof Bar) . . .

7. RELATED & FUTURE WORK
Casts in Java have been targeted before by improvements
of the type system. Most notably generics [10] which target
a subset of the unguarded casts and make these safe. Also

return type substitution introduced in Java 5 has the po-
tential to eliminate unguarded casts for instance of calls to
clone().

The IDEA [1] development environment has a feature
based on a similar analysis which automatically inserts casts
into the source code in some of the cases where expressions
are guarded. This feature is purely pragmatic and casts both
non-final field accesses and method invocations, though not
array accesses. The feature does not take assignment into
account and therefore also inserts unsound casts in some
cases.

Similar work has also been done for dynamicly typed lan-
guages like Scheme [9, 8] and JavaScript [6] where condi-
tional flow and runtime checks are taken into account in the
typing rules.

In C# the as operator can be used to do a guarded pro-
motion of a variable through this idiom:

var f = o as Foo;
if (f != null) {

f.DoFooStuff();
}

This approach avoids the redundancy of naming Foo twice
but instead requires the additional test for nullness.

Incorporating the data-flow analysis for Guarded Type
Promotion into the type checker increases the space/time
complexity of type checking. Future work lies in studying
both the theoretical and practical cost of this added com-
plexity. The soundness properties of Guarded Type Pro-
motion, that the promoted type is always a subtype of the
static type and a supertype of the dynamic type, are cur-
rently only conjectured. Future work lies in proving these
properties formally. Furthermore further study is needed to
determine to which extent the rules for Guarded Type Pro-
motion and its integration into Java is comprehensible to
programmers.
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APPENDIX

A. EXAMPLES
In this section we present a few examples of how the data-
flow analyses enables the typing of guarded casts. We show
one example for each of the four kinds of guarded casts de-
scribed in Section 2 as well as an example of an invalid cast.

A.1 if-Guarded Cast
In the first example we use an instanceof-expression to guard
the use of the variable o:

1 int m(Object o) {
2 int x = 0;
3 if (o instanceof String) {
4 x = o.length();
5 }
6 return x;
7 }

Some of the computed type maps are:
B�2� = {}

At�3� = {Local (o) �→ targetInfo(Object, {
typeHolder (Object, {String}, ∅)

}, {String})}
Af �3� = {Local (o) �→ targetInfo(Object, {

{typeHolder (Object, ∅, {String})
}, {String})}

B�4� = At�3�
A�4� = B�4�
B�6� = {Local (o) �→ targetInfo(Object, {

typeHolder (Object, {String}, ∅),
typeHolder (Object, ∅, {String})

}, {String})}
Initially, in B�2�, we have no promotional information. After
the condition in line 3 we have two results. If true we have
in At�3� that o is known to be an instance of String and if
false we have in Af �3� that o is known not to be an instance
of String. In line 4 we have the same information as in At�3�
enabling the call of length() on o. After the if-statement, in
line 6, we have the joined information of A�4� and Af �3�,
that is, that o is either an instance of String or not. Note that
since we have collected String as a declaration of interest this
is not the same as no information. Such information could
be used by later assignments like in the ensure-guarded cast
example below.

A.2 Dead-if-Guarded Cast
The second example uses a getClass()-test together with
reachability to guard the use of the variable o:

1 boolean m(Object o, Number n) {
2 if (o.getClass() != n.getClass()) {
3 return false;
4 }
5 return o.intValue() == n.intValue();
6 }

Some of the computed type maps are:
B�2� = {}

At�2� = B�2�
Af �2� = {

Local (o) �→ targetInfo(Object, {
typeHolder (Object, {Number}, ∅)

}, {Number}),
Local (n) �→ targetInfo(Number, {

typeHolder (Number, {Object}, ∅)
}, {Object})

}

B�3� = At�2�
B�5� = Af �2�

Here we see that the guard in line 2 provides no information
on true. On false, however, we extend the type map with
the knowledge that o is an instance of Number and that n is
an instance of Object, i.e. that n is not null. Since the body
of the if-statement does not complete normally we have in
B�5� the same information as in Af �2� enabling the call to
intValue() on o.

A.3 Ensure-Guarded Cast
In this example we ensure the type of o through both paths
of an if-statement:

1 int m(Object o) {
2 if (!(o instanceof String)) {
3 o = o.toString();
4 }
5 return o.length();
6 }

Some of the computed type maps are:

B�2� = {}
At�2� = {Local (o) �→ targetInfo(Object,

{typeHolder(Object, ∅, {String})}, {String})}
Af �2� = {Local (o) �→ targetInfo(Object,

{typeHolder(Object, {String}, ∅)}, {String})}
B�3� = At�2�
A�3� = {Local (o) �→ targetInfo(Object, {

typeHolder(Object, {String}, ∅),
typeHolder(Object, ∅, {Object})

}, {String})}
B�5� = join(Af �2�, A�3�) = A�3�

After false of the condition in line 2 we know o to be an
instance of String. After true we know that o is not an
instance of String but that String is a declaration of interest.
This is used in the assignment in line 3 which collects the
information in A�3� that o is either an instance of String or
null. The information in B�5� is the join of At�2� and A�3�
which is same as A�3� itself, i.e. that o is a subtype of String
(possibly null) enabling the call to length() on o.

A.4 while-Guarded Cast
In this example we guard the use of c through a loop over
the parent relation of the component. Code patterns like
this occur several times in the AWT/Swing framework.

1 Window m(Component c) {
2 while (c != null
3 && !(c instanceof Window))
4 {
5 c = c.getParent();
6 }
7 return c;
8 }

Some of the computed type maps are:

B�2� = {}
At�2� = {Local (c) �→ targetInfo(Component, {

typeHolder(Component, {Component}, ∅)
}, {Component})}

Af �2� = {Local (c) �→ targetInfo(Component, {
typeHolder(Component, ∅, {Component})

}, {Component})}



B�3� = At�2�
At�3� = {Local (c) �→ targetInfo(Component, {

typeHolder(Component, {Component}, {Window})
}, {Component, Window})}

Af �3� = {Local (c) �→ targetInfo(Component, {
{typeHolder(Component, {Component, Window}, ∅)

}, {Component, Window})}
B�5� = At�3�
A�5� = {Local (c) �→ targetInfo(Object, {

typeHolder(Component, ∅, {Component}),
typeHolder(Component, {Component}, ∅)

}, {Component, Window})}
B�7� = {Local (c) �→ targetInfo(Object, {

typeHolder(Component, {Window}, ∅),
typeHolder(Component, ∅, {Window})

}, {Component, Window})}
The loop condition falls in two parts. The first part in line
2 determines nullness of c and the second part determines
whether c is a Window instance. In line 5 we thus know
from At�3� that c is an instance of Component but not of
Window. After the loop in line 7 we know the join of Af �2�
and Af �3�, i.e. that c is either null or an instance of Window.
If we had not collected the nullness information in line 2 we
would not have known c to be a subtype of Window in line
7 since the join of Af �2� and Af �3� then would have been
empty.

A.5 Invalid Cast
The last example shows how invalid casts can be detected
through a sequence of contradicting guards.

1 void m(Object o) {
2 o = (String)o;
3 if (o instanceof Integer) {
4 if (o instanceof String) {
5 . . .
6 }
7 }
8 }

Some of the computed type maps are:

B�2� = {}
B�3� = B�2�

At�3� = {Local (o) �→ targetInfo(Object, {
typeHolder(Object, {Integer}, ∅)

}, {Integer})}
Af �3� = {Local (o) �→ targetInfo(Object, {

typeHolder(Object, ∅, {Integer})
}, {Object})}

B�4� = At�3�
At�4� = {Local (o) �→ targetInfo(Object, {

typeHolder(Object, {Integer, String}, ∅)
}, {Integer, String})}

Af �4� = {Local (c) �→ targetInfo(Object, {
typeHolder(Object, {Integer}, {String}),

}, {Integer, String})}

Here we see that line 2 is not considered a guard, providing
no promoted information about o in B�3�. The true branch
of line 3 provides the information that o is an instance of
Integer and the true branch of line 4 expands this by adding
String to the set of true declarations. Now since all type
holders of At�4� are invalid — the sole type holder states
that o is an Integer and a String instance at the same time
— an ‘unreachable code’ error is given for line 4.


