
Harmless Compiler Plugins

Nathaniel Nystrom
Faculty of Informatics
University of Lugano
nate.nystrom@usi.ch

Abstract
Languages such as Java and Scala allow programmers to write com-
piler extensions, or plugins, that extend the host programming lan-
guage with new functionality to enable additional static checking
and code transformations.

However, by permitting arbitrary code transformations, com-
piler plugins can change the host language semantics in unexpected
ways. Moreover, plugins do not compose. Plugins can interfere
with each other such that one plugin can undo the effects of an-
other, or worse, cause another plugin to generate incorrect code.

In this paper, we develop a theoretical framework for harmless
compiler plugins. Host language programs are annotated to limit
the scope of plugins. Plugins may change the termination behavior
of code outside these scopes, but they are prohibited from chang-
ing the values computed by the original computation. The frame-
work is based on an extension of Welterweight Java and uses an
information-flow type system to limit plugin effects.

1. Introduction
Today’s software environment is becoming increasingly complex.
Developers must write code for parallel and distributed systems,
systems that are often constructed from components written in mul-
tiple languages using complex libraries and frameworks, and that
operate on an alphabet soup of data formats. Ensuring reliability
while providing maintainability and high performance presents a
difficult challenge.

One class of tools being used more and more to address these
challenges is compiler extensions, or plugins. Plugins modify or
extend an existing compiler with new functionality to enable ad-
ditional static checking and code transformations, including op-
timizations. Plugins provide a mechanism to perform static anal-
yses and code transformations on programs written in embedded
domain-specific languages.

However, these compiler extensions present a number of chal-
lenges. By permitting code transformations, plugins can change the
language semantics in unexpected ways. Plugins can interfere with
each other, introducing conflicting syntax or semantics. These in-
compatibilities can lead different developers to develop separate,
incompatible language extensions: the developer community can
fragment into several groups that each use a different dialect of the
host language.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FTfJP’11, July 26, 2011, Lancaster, UK.
Copyright c© 2011 ACM 978-1-4503-0893-9/11/07. . . $5.00

What is needed is a mechanism to ensure that plugins do not
interfere with each other or with the host language in surprising
ways. In this paper, we will develop a theoretical framework for
safe, modular compiler extensions. Inspired by information-flow
type systems for enforcing security policies [25, 16, 17, 24] for
and by Dantas and Walker’s notion of harmless advice [5] for
aspect-oriented languages, we define a notion of harmlessness for
compiler plugins. The key idea is to allow the user of a compiler
plugin to specify what code they trust the plugin to transform,
limiting the effects of a plugin to a more manageable scope. A type
system ensures that values generated by the plugin do not interfere
with the rest of the computation.

The rest of this paper is organized as follows. Section 2 develops
the idea of harmless compiler plugins using a small extension of
Java, and Section 3 presents some examples to illustrate its useful-
ness. Section 4 introduces a formal semantics for harmless plugins
using an extension of Welterweight Java [21]. We define a sound-
ness property that guarantees that a harmless plugin cannot change
the behavior of the original program except where the programmer
expressly allows it. Related work is discussed in Section 5, and
Section 6 concludes with a discussion of future work.

2. Overview
Often, compiler plugins are used to implement additional seman-
tics checking of programs, for example checking coding conven-
tions, checking that programs follow business guidelines, check-
ing for security errors. These restrictive plugins do not transform
code; they simply accept or reject programs based on some correct-
ness criteria. Restrictive plugins are always safe since they do not
change the semantics of the underlying programming language. In
this paper, however, we are concerned with a more powerful class
of plugins: those that perform code transformations. These trans-
formations are used to implement optimizations, to generate glue
code, and to implement domain-specific language extensions.

We assume that plugins, like those for Scala [20], X10 [2, 19],
and Thorn [1], can perform arbitrary transformations. However, this
power enables plugins to change the behavior of the underlying
programming language or to interfere with one another. To prevent
this, we adapt the notion of noninterference from information-flow
type systems. A completely noninterfering plugin can transform
code and can generate code; however, it cannot change the behavior
of the original computation to which the plugin is applied, except
possibly by changing the termination or I/O behavior. For example,
a noninterfering plugin could generate logging statements. These
statements simply read values computed by the mainline compu-
tation and perform I/O. To implement logging, the plugin might
allocate objects and later modify these objects; however, it cannot
modify objects allocated by the original computation.

Requiring complete noninterference ensures safety and is use-
ful, but it is still restrictive. For instance, consider a plugin used in

the implementation of software transactional memory (STM). One
way to implement transactions is to record the memory operations
performed by a transaction. When the transaction attempts to com-
mit, the set of locations accessed by concurrent transactions are
compared and if there is a data race, one or more of the conflicting
transactions are aborted. A plugin can aid with the implementation
of STM by translating the body of a transaction into code that im-
plements memory access logging and the commit and abort opera-
tions. To implement the abort operation, any writes performed by
the transaction need to be undone. This action violates the noninter-
ference property of the plugin—the abort generated by the plugin
can write to memory locations accessed by the subsequent com-
putation. These writes are benign, however. The plugin performs
exactly those writes to memory that are expected of it given that it
is designed to implement STM.

To allow these writes—and more generally, to allow more ex-
pressive and powerful, yet safe, compiler plugins—we introduce a
language construct that allows the programmer to declare trust in a
plugin, permitting it to perform some operations that can change the
behavior of the underlying program. We say a plugin is harmless
if it does not change the behavior of the program in an untrustwor-
thy manner. We will formalize harmlessness in Section 4, but first
describe the idea informally, illustrating with some examples.

To support harmless plugins, we introduce two language con-
structs that allows the programmer to specify precisely which pro-
gram statements a plugin is allowed to transform, and how it can
transform. Introducing a language change enables library–plugin
co-design: library writers can develop code with the expectation
that a given plugin will generate code to be used with the library.

The statement replace (p) s states that the plugin p can trans-
form the statement s arbitrarily. No restrictions are placed on the
transformations the plugin can perform in a replace statement. A
plugin is free to insert statements and also to remove statements
from the body of a replace statement. Moreover, plugins are free
to introduce new class and method definitions (as long as existing
name bindings do not change) and to invoke these new constructs
from within the body of a transformed replace statement.

The second statement, interleave (p) s, allows the plugin
p to interleave new statements between individual statements of
s, but not to transform s arbitrarily. We show in Section 4 how
interleave statements can be rewritten into replace statements.

The plugin is prohibited from performing transformations on
statements outside the body of replace or interleave state-
ments. However, because arbitrary transformations can occur, the
effects of a plugin may escape the body of these statements. For
example, a plugin can add (or remove) an assignment to a field de-
clared in the original program. Thus, harmless plugins also provide
a mechanism to permit the programmer to specify memory loca-
tions that the plugin is allowed to affect. Plugins can insert and
remove writes to these locations within a replace statement.

To specify these locations, we use an information-flow type and
effect system [25, 16]. Variables are labeled with the sets of plugins
that can write to those variables. We write c` for the type with class
c and label `; ` is simply a set of plugins p. The type system ensures
that any value that depends on code produced by a plugin p cannot
be stored in a variable unless that variable is labeled with p.

Thus for a plugin p, if a variable x is not labeled with p, that
variable cannot be influenced by p: it cannot be assigned inside a
replace (p) statement; and moreover, any value produced within
a replace (p) statement or any value that transitively depends on
that value, cannot be assigned into x, even if the assignment is done
outside the replace body.

The type system must handle not only explicit flows (such
as through an assignment), but also implicit flows. For example,

1 @table("account") @plug("ORM")
2 class Account extends Tuple {
3 @column("id")
4 long id;
5
6 @column("name")
7 String name;
8
9 @column("balance")
10 long balance;
11
12 static List<Account> load() {
13 replace ("ORM") {
14 /* this will be replaced */
15 }
16 }
17 ...
18 }

Figure 1. ORM example

consider the statements:

booleanp x;
boolean y;
replace (p) x= true;
if (x) y= true; else y= false;

Even though there is no explicit assignment from x to y, the value
stored in y depends on x—there is an implicit flow from x to y.
Since y is not declared to depend on plugin p, the implicit flow
from x to y must be prevented by the type system.

Although we formalize harmless plugins using a type system,
they need not be implemented as one. Instead, one could have
plugin users annotate classes and packages that plugins are allowed
to affect. These annotations can be provided when invoking the
compiler rather than as source code annotations. The primary goal
is to require the programmer to explicitly name the plugins that can
affect the behavior of a piece of code; the mechanism for achieving
this matters less.

3. Examples
Harmless plugins are formalized in Section 4. But, to illustrate the
concepts we first present some examples.

3.1 Atomic blocks
Consider a plugin for supporting software transactional memory.
The programmer writes an atomic block as atomic s to run state-
ment s within a transaction. The plugin rewrites s to log memory
operations and to validate that the transaction does not conflict with
another transaction.

In our language extension, one could write an atomic block
replace ("atomic") { . . .}. Since the plugin rewrites the body
of the atomic block, the type of any variable written by the body
must be labeled with the atomic plugin. In addition any method
called by the transaction must also be labeled with atomic.

3.2 ORM
A compiler plugin can be used to implement an object–relational
(OR) mapping. Given an annotated class declaration, the plugin
generates code to map between database tuples and instances of
the class. For example, the class declaration in Figure 1 maps to
a database table account with columns id, name, and balance.
The @table annotation specifies that instances of the class map

to a tuple of the given table. The @column annotations on fields
specify which database attribute the field maps to.

The @plug annotation on line 1 specifies that a field of the class
might depend on values produced by the ORM plugin—that is, that
all field types t are implicitly labeled with ORM: tORM.

The ORM plugin also implements methods that load and save
instances of Account to the account table. The load method on
lines 12–16 contains a replace statement that returns an empty
list. The plugin might rewrite this method as follows:

static List<Account> load() {
List<Account> l = new ArrayList<Account>();
ResultSet rs = execute("SELECT * FROM account");
while (rs.next()) {
Account a = new Account(); l.add(a);
a.id = rs.getLong("id");
a.name = rs.getString("name");
a.balance = rs.getLong("balance");

}
return l;

}

Since the generated load method updates the fields of the
Account objects it instantiates, those fields must be labeled with
the ORM plugin. The @plug annotation on the class declaration en-
sures that this is true.

3.3 Logging
In this example, we describe a plugin for injecting logging code
into the computation, say to log calls to a particular method m. The
plugin generates code to output to a log file, but does not otherwise
change the behavior of the mainline computation.

We can model this kind of plugin by wrapping the en-
tire program (or rather, all statements in the program) in a
interleave ("log") statement. This allows the plugin to locate
calls to m and interleave logging code, but it prevents the plugin
from performing transformations that change the mainline behav-
ior of the code.

4. A calculus for harmless plugins
We formalize harmless compiler plugins in a simple calculus. The
semantics are based on Welterweight Java (WJ) [21]. We chose WJ
over Featherweight Java [11] since WJ models the heap and we
wish to model the effect of assignments within a replace expres-
sion. We elide some of the semantics, especially for “standard” con-
structs, and refer the reader to Östlund and Wrigstad’s paper [21]
for the complete semantics of Welterweight Java.

The grammar for the calculus is shown in Figure 2. A program
P consists of a set of class declarations C and a set of compiler
plugins p. For a program P, CT(P)(c) returns the class declaration
for class c, and PT(P) is the set of plugins for P.

Plugins p are functions from programs to programs. A plugin
may both introduce and remove classes, methods, and fields in its
output p(P). To be harmless, the full expressive power of plugins
is restricted, as described in Section 4.2.

A class declaration C has fields and methods. Fields are as
in WJ. Methods are extended with a label annotation `, which
specifies the set of plugins that can invoke the method. The label
also bounds the effects of the method. If a method is labeled
with plugin p, it is permitted to write only variables that can be
influenced by p. This label must be preserved when overriding the
method in a subclass.

Statements consist of sequences, field accesses and updates,
variable moves, allocation, calls, and type casts. For simplicity,
most statements are flattened and do not have nest. The ε statement

P ::= (C, p) program
C ::= class c extends d { F M } class
F ::= t f field
M ::= t m`(t x) { t ′ x′ s } method
s ::= ε | s1; s2 | x = y. f | x = z statement

| y. f = z | x = new t()
| x = y.m(z) | x = (c) z
| if (x == null) s1 else s2
| replace (`) s

t ::= c` type
` ::= p label

Figure 2. Grammar

is a no-op. The exceptions to this are the if and replace state-
ments. Unlike WJ, we include if statements so that we can model
implicit flows. Types consist of a class c and a label ` specifying
the plugins on which values of that type may depend.

One notable omission from the calculus is the interleave
statement. Instead, interleave (`) s can be encoded as

JsK`; replace (`) ε

where JsK` is defined as follows:

Jinterleave (`′) sK` = replace (`) ε; interleave (`′) JsK`
Jreplace (`′) sK` = replace (`) ε; replace (`′) JsK`

Js1; s2K` = Js1K`; Js2K`
Jif (e) s1 else s2K` = replace (`) ε; if (e) Js1K` else Js2K`

JsK` = replace (`) ε; s otherwise

The calculus also does not model exceptions. One option is to
extend the calculus to handle exceptional flows similarly to the Jif
language [16]. A replace statement can be annotated with the set
of exceptions it is permitted to throw. A plugin that introduces
other exceptions would be rejected as non-harmless. Labels on
catch statements can indicate the set of plugins that might cause
the caught exception to be thrown. Other possibilities are to turn
exceptions introduced by plugins into errors or to run plugin code
transactionally—if a plugin throws an unexpected the replace
statement is rolled back and has no effect on the rest of the program.

The formal semantics below use the auxiliary functions in Fig-
ure 4 and the grammar elements of Figure 5.

4.1 Dynamic semantics
The dynamic semantics for the calculus are shown in Figure 3.
These are nearly identical to the semantics in WJ [21] with the
addition of rules for if and replace. Each rule transforms a
heap H and call stack S into a new heap and stack. Stack frames
consist of a map of local variables L and the next statement to
execute. A single step can modify the local variable map and the
heap. Note that the cast rule D-CAST does not use the label on the
value being cast—this label is never stored. The new rule for if is
straightforward. The new D-PLUG rule simply evaluates the body
of the replace statement. We elide the error rules from [21].

4.2 Static semantics
A plugin p is a function from programs to programs. To be harmless
with respect to this calculus a plugin p must satisfy the following:

• If ` P, then ` p(P). That is, if the original program P is well-
formed, the transformed program is also well-formed.

• All statements in P except replace statements are preserved
by p. More precisely, for a statement s let unplugged(s)

L(z) = v
H | S〈L,x = z; s〉m −→ H | S〈L[x 7→ v],s〉m (D-ASSIGN)

L(y) = ι H(ι. f) = v
H | S〈L,x = y. f ; s〉m −→ H | S〈L[x 7→ v],s〉m (D-SELECT)

L(y) = ι L(z) = v
H | S〈L,y. f = z; s〉m −→ H(i. f := v) | S〈L,s〉m (D-UPDATE)

F = [f 7→ null | f ∈ dom(fields(t))]
H ′ = H[ι 7→ (c,F)] ι is fresh

H | S〈L,x = new c`(); s〉m −→ H ′ | S〈L[x 7→ ι],s〉m
(D-NEW)

L(y) = ι H(ι) = (c, . . .)
mbody(c.m) = (x′,x′′,s′) L(z)

L′ = [this 7→ ι][x′ 7→ v][x′′ 7→ null]
H | S〈L,x = y.m(z); s〉m −→ H | S〈L,x = y.m(z); s〉m,〈L′,s′〉c.m (D-CALL)

(L(z) = ι H(ι) = (d, . . .) ` d <: c) ∨ L(z) = null
H | S〈L,x = (c) z; s〉m −→ H | S〈L[x 7→ L(z)],s〉m (D-CAST)

i = 1 if L(x) = null,else 2
H | S〈L,if (x == null) s1 else s2; s〉m −→ H | S〈L,si; s〉m (D-IF)

H | S〈L,(replace (`) s); s′〉m −→ H | S〈L,s; s′〉m (D-PLUG)

Figure 3. Operational semantics

be the statement formed by rewriting any sub-statement
“replace (`) s′ ” to ε. For all statements s occurring any-
where in P, let p(s) be the corresponding transformed state-
ment in p(P). Then we require that a harmless plugin p ensure
unplugged(s) = unplugged(p(s)).

Given the type system we describe next, these conditions ensure
that a plugin cannot change the computation of any values that are
assigned to a variable that is not labeled with p. This guarantees
that if there no variables are labeled with p, p cannot change the
behavior of the program (modulo changes in termination and I/O
behavior).

The static semantics for the calculus are shown in Figure 6. The
semantics for well-formedness of programs, classes, and methods
are similar to WJ are are elided. All judgments in the static se-
mantics are implicitly parametrized on the program P. The typing
rules differ from WJ by introducing a label into the typing environ-
ment. Following other information-flow type systems, typing rules
assume a label pc, which can be thought of as the label associated
with the program counter. The pc label represents the set of plugins
on which the statement s is control-dependent. The general form of
a typing judgment for a statement is thus pc; E ` s.

Since most of the typing rules for statements assign to a vari-
able, we illustrate how the pc label affects the semantics by dis-
cussing one rule, S-ASSIGN. The rule first checks that the variables
x and z are of the same type (just as in [21]). It then checks that the
pc label (a set of plugins) is a subset of the label on the type of x.
This ensures that if control reached this statement because of code
that might have been transformed by a plugin p, then x’s type indi-
cates that it can be influenced by p. The other rules handle the pc
label similarly.

The result of the mtype(·) function in Figure 4 includes a label
on the function as well as on the argument and return types. The
S-CALL rule additionally checks that the pc label is a subset of the
label on the method being called.

The S-CAST rule preserves the label on the type. There is
no way in the calculus to drop a label from a type. We plan to
investigate such downgrading policies [4] in the future.

Both the S-PLUG and S-IF rules change the pc label for their
sub-statements. S-PLUG adds the set of plugins in the replace
statement to the pc label. S-IF adds the set of plugins on which
the branch condition depends to the pc label for the arms of the if
statement. This ensures that if the branch condition depends on a
given plugin, that dependency will be propagated to assignments
dependent on the branch.

Subtyping is the reflexive, transitive closure of the relation de-
fined by the SUB-DIR rule. A subtype must be a subclass of its

fields(c) = fst(CT(P)(c)) Lookup all fields for class c
ftype(c. f) = fields(c)(f) Lookup type of field f in class c
methods(c) = snd(CT(P)(c)) Lookup all methods for class c

mtype(c.m) = t `−→ t Lookup signature of method m in
class c

mbody(c.m) = (x,x′ret,s) Lookup variables and body of
method m in class c

label(c`) = ` Get the label of a type

Figure 4. Lookup functions

supertype. In addition, a subtype may be labeled with fewer plugin
than the supertype. Types are well-formed if the class is in the class
table CT and if all plugins in type’s label are in the plugin table PT .

4.3 Noninterference
To prove that the type system and the additional conditions on
harmless plugins in Section 4.2 ensure noninterference, we need
to prove not only that the type system above is sound, but also that
for any program P and for any statement, if there is a variable x
that does not trust plugin p—that is, the label on its type does not
include p—then both P and p(P) compute the same value for x.
More formally, we must prove the following property holds:

NONINTERFERENCE: Let P be an program such that ` P,
and let p be a harmless plugin. Let s be a statement such that
P; pc; E[x : c`] ` s where p 6∈ ` (i.e., s is a statement with a free
variable x that cannot be influenced by p, and that type-checks in
the context of program P). Then, for all well-formed heaps H and
all well-formed stacks S, if

H | S〈L[x 7→ null],s〉m→∗ H1 | S〈L1,s1〉m

in P, then

H | S〈L[x 7→ null],s〉m→∗ H2 | S〈L2,s2〉m

in p(P) and L1(x) = L2(x). �

5. Related work
Our notion of harmlessness was inspired by Dantas and Walker’s
harmless advice [5], an approach to ensuring safety of aspect-
oriented [14, 13] programs. The primary difference between our
work and theirs is that their work provides a simpler protection
model: code (advice) injected into the program cannot write to any
locations that affect the mainline computation; harmless advice can
only write to variables created by the aspect. Moreover, aspects,
unlike compiler plugins, can neither transform nor delete existing

E ` x : t E ` z : t pc⊆ label(t)
pc; E ` x = z

(S-ASSIGN)

E ` x : t pc⊆ label(t)
pc; E ` x = new t()

(S-NEW)

E ` y : t E ` x : t ′ t ′ = ftype(t. f) pc⊆ label(t ′)
pc; E ` x = y. f

(S-SELECT)

E ` y : t E ` z : t ′ t ′ = ftype(t. f) pc⊆ label(t ′)
pc; E ` y. f = z

(S-UPDATE)

E ` y : t mtype(t.m) = t `−→ t ′
E ` z : t E ` x : t ′ pc⊆ ` pc⊆ label(t ′)

pc; E ` x = y.m(z)
(S-CALL)

E ` z :d` E ` x :c` pc⊆ `

pc; E ` x = (c) z
(S-CAST)

pc∪ `; E ` s
pc; E ` replace (`) s

(S-PLUG)

E ` x : t pc∪ label(t); E ` s1 pc∪ label(t); E ` s2

pc; E ` if (x == null) s1 else s2
(S-IF)

P(c) = class c extends d { F M } `⊆ `′

` c`<: d`′
(SUB-DIR)

c ∈ dom(CT(P)) ` ∈ PT(P)

` c`
(TYPE)

Figure 6. Static semantics

S ::= ε | S〈L,s〉m Stack

L ::= [] | L[y 7→ v] Stack frame

v ::= ι | null Value

H ::= [] | H[ι 7→ (c,F)] Heap

F ::= [] | F [f 7→ v] Fields

E ::= [] | E[y : t] | E[f : t] Local type environment

Figure 5. Syntax of type environments, stacks, heaps

code. Other approaches to ensuring aspects are safe and compos-
able include CompAr [23], which uses a constraint system to ensure
advice can be composed, and StrongAspectJ [9], which enforces
safety through a type system.

Our calculus is similar to security-typed languages [25, 16, 24]
and the type system is similar to type systems that enforce integrity
policies. Work in this area suggests some extensions to the type sys-
tem proposed here, including supporting label polymorphism [16]
and downgrading policies [4] that would relax strict noninterfer-
ence.

Several languages support compiler plugins. Scala [20], X10 [2,
19], and Thorn [1] all permit plugins to perform arbitrary transfor-
mations. Writing plugins requires intimate knowledge of the com-
piler implementation and few, if any, safety guarantees are pro-
vided.

Java, also supports compiler plugins. Java version 6 supports a
form of compiler plugin called an annotation processor, however
these are not capable of transforming code. Indeed, they have
access only to package, class, and class member declarations, not
to a representation of the executable code.1

Often, a more powerful approach than compiler plugins it to
use an extensible compiler framework, which places no restrictions
on how the language can be extended. Frameworks such as Poly-
glot [18] and JastAdd [7] allow a compiler to be extended with sup-
port for new syntax and semantics. These frameworks differ from
compiler plugins architecturally. The extended compiler is a stan-
dalone compiler and can often be used as a drop-in replacement for

1 This can be worked around by using other means to access the source or
bytecode for a given class.

the original base compiler. Compiler frameworks are often used for
making pervasive changes to the language, such as modifications
of the type system, for research or pedagogical purposes. Plugins,
by contrast, have (so far) been used primarily for small extensions
to the base language.

Java [10] provides syntax for annotating declarations with meta-
data and a compiler plugin mechanism for performing additional
static checking of code. The Checker framework [22] supports
flow-sensitive types qualifiers in Java and has been used to im-
plement, for example, nonnull types and immutable types. Anno-
tations based on Checker’s type qualifiers are planned for inclu-
sion in Java version 7 through JSR 308 [12]. These checkers, as
well as many other systems, such as JavaCOP [15] and CQual [8]
and semantic type qualifiers [3], perform no code transformations
but rather simply check annotated programs against stronger cor-
rectness criteria than Java requires. C] [6] provides an annotation
mechanism, called attributes, similar to Java 7’s.

6. Conclusions
Harmless plugins are a class of compiler plugins that can perform
safe code transformations. By declaring what statements the plugin
is allowed to transform and what variables the plugin is allowed to
modify, a programmer can limit the effects of a compiler plugin to
an expected set of classes and methods.

Introducing a language construct enables a library–plugin co-
design methodology. Library writers develop their code with the
expectation that a given plugin will generate code or transform code
for that library.

Soundness and noninterference properties of the calculus need
to be proved. Incorporating features from security-typed languages
such as downgrading [4] and label polymorphism [16] can help
improve the expressiveness of the language.

We also look forward to implementing this framework in the
Scala compiler and to evaluating its usefulness by developing sev-
eral compiler plugins, exploring different ways to express how the
scope of a plugin should be limited.

References
[1] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor

Richards, Rok Strniša, Jan Vitek, and Tobias Wrigstad. Thorn–
robust, concurrent, extensible scripting on the JVM. In Proceedings
of the ACM Conference on Object-Oriented Programming, Systems,
Languages, and Appplications (OOPSLA), October 2009.

[2] Philippe Charles, Christian Grothoff, Christopher Donawa, Kemal
Ebcioğlu, Allan Kielstra, Christoph von Praun, Vijay Saraswat, and
Vivek Sarkar. X10: An object-oriented approach to non-uniform
cluster computing. In Proceedings of the 20th ACM Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2005), October 2005.

[3] Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type
qualifiers. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages
85–95, 2005.

[4] Stephen Chong and Andrew C. Myers. Security policies for
downgrading. In Proceedings of the 11th ACM conference on
Computer and Communications Security (CCS), pages 198–209,
2004.

[5] Daniel S. Dantas and David Walker. Harmless advice. In Proceedings
of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’06), pages 383–396, January 2006.

[6] ECMA. Standard ECMA-334: C] language specification (4th edi-
tion). http://www.ecma-international.org/publications/
standards/Ecma-334.htm, June 2006.

[7] Torbjörn Ekman and Görel Hedin. The JastAdd extensible Java
compiler. In Proceedings of the 22nd ACM Conference on Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA 2007), pages 1–18, New York, NY, USA, 2007. ACM.

[8] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive
type qualifiers. In Proceedings of the 29th ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL), pages
1–12. ACM Press, June 2002.

[9] Bruno De Fraine, Mario Südholt, and Vivane Jonckers. Stron-
gAspectJ: Flexible and safe pointcut/advice bindings. In Proceedings
of the Seventh International Conference on Aspect-Oriented Software
Development, pages 60–71, March 2008.

[10] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification. Addison Wesley, 3rd edition, 2005. ISBN
0321246780.

[11] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: a minimal core calculus for Java and GJ. ACM Transac-
tions on Programming Languages and Systems, 23(3):396–450, May
2001.

[12] JSR 308: Annotations on Java types. http://jcp.org/en/jsr/
detail?id=308.

[13] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersen, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In

Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), volume 2072 of Lecture Notes in Computer
Science, pages 327–353, Berlin, Heidelberg, and New York, 2001.
Springer-Verlag.

[14] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), number 1241 in Lecture
Notes in Computer Science, pages 220–242, Jyväskylä, Finland, June
1997. Springer-Verlag.

[15] Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd Millstein,
Chris Andreae, and James Noble. JavaCOP: Declarative pluggable
types for Java. ACM Transactions on Programming Languages and
Systems, 32(2):1–37, January 2010.

[16] Andrew C. Myers. JFlow: Practical mostly-static information flow
control. In Proc. 26th ACM Symp. on Principles of Programming
Languages (POPL), pages 228–241, San Antonio, TX, January 1999.

[17] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,
and Nathaniel Nystrom. Jif: Java information flow. Software release,
at http://www.cs.cornell.edu/jif, July 2001–.

[18] Nathaniel Nystrom, Michael Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for Java. In Görel Hedin,
editor, 12th International Conference on Compiler Construction (CC
2003), number 2622 in Lecture Notes in Computer Science, pages
128–152, Warsaw, Poland, April 2003. Springer-Verlag.

[19] Nathaniel Nystrom and Vijay Saraswat. An annotation and compiler
plugin system for X10. Technical Report RC24198, IBM T.J. Watson
Research Center, 2007.

[20] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala
(2nd ed.). Artima, 2010.

[21] Johan Östlund and Tobias Wrigstad. Welterweight Java. In
Proceedings of the 48th international conference on objects, models,
components, patterns (TOOLS’10), number 6141 in Lecture Notes in
Computer Science, pages 97–116, 2010.

[22] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H.
Perkins, and Michael D. Ernst. Practical pluggable types for Java.
In Proceedings of the 2008 International Symposium on Software
Testing and Analysis (ISSTA 2008), pages 201–212, July 2008.

[23] Renaud Pawlak, Laurence Duchien, and Lionel Seinturier. CompAr:
Ensuring safe around advice composition. In Proceedings of the 7th
IFIP International Conference on Formal Methods for Open Object-
based Distributed Systems (FMOODS), number 3535 in Lecture
Notes in Computer Science, pages 163–178, 2005.

[24] François Pottier and Vincent Simonet. Information flow inference for
ML. ACM Transactions on Programming Languages and Systems,
25(1):117–158, January 2003.

[25] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type
system for secure flow analysis. Journal of Computer Security,
4(3):167–187, 1996.

