
Fractional Permissions without the Fractions

Stefan Heule
ETH Zurich

stheule@ethz.ch

K. Rustan M. Leino
Microsoft Research

leino@microsoft.com

Peter Müller
ETH Zurich

peter.mueller@inf.ethz.ch
Alexander J. Summers

ETH Zurich
alexander.summers@inf.ethz.ch

ABSTRACT
Fractional Permissions are a popular approach to reasoning
about programs that use shared-memory concurrency. Ab-
stractly, they provide a way of managing that either multiple
readers or one writer thread can access a resource concur-
rently. Concretely, specification using fractional permissions
typically requires the user to pick concrete mathematical
values for partial permissions, making specifications overly
verbose, tedious to write, and harder to adapt and re-use.

This paper contributes a flexible and expressive specifi-
cation methodology for supporting fractional permissions
while allowing the user to work at the abstract level of
read and write permissions. The methodology is flexible
and modular, and has been implemented in the verification
tool Chalice.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, programming by contract

General Terms
Verification

Keywords
Static verification, concurrency, fractional permissions

1. INTRODUCTION
An important part of reasoning about concurrent pro-

grams concerns their patterns of access to memory and other
shared resources. A useful aid in the specification of such
patterns is to use a model of resource permissions that can
be transferred between program entities to specify how in-
dividual threads are currently allowed to access shared re-
sources. By allowing permissions to be fractional [2], it is
possible to distinguish between acceptable read and write
behaviours, which is necessary for expressive reasoning about
programs with shared-memory concurrency.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP’11, July 26, 2011, Lancaster, UK.
Copyright 2011 ACM 978-1-4503-0893-9/11/07 ...$10.00.

The traditional model of fractional permissions associates
an access right with every memory location. The access
right can be divided into fractions, which can be held by and
transferred between threads and method activation records.
An activation record can read a memory location only if
it holds a non-zero fraction of the memory location’s access
right. To write to the memory location, the activation record
must hold the entire access right. Since fractional permis-
sions can only be divided and combined, but never forged or
duplicated, this discipline ensures race freedom for memory
updates while allowing concurrent reads.

Permissions are a fictional notion used for static reasoning
about a program; they are used in specifications and during
program verification, but are not present at program exe-
cution. The soundness argument of a successful verification
guarantees that the program will be race-free, although the
programming language itself allows memory races in general.

While fractional permissions give rise to a flexible model
for reasoning, writing specifications in this model can be
tedious and overly verbose due to the need to work with
some concrete mathematical representation of the permis-
sions. The problem is exacerbated by the fact that pro-
grammers are concerned with permissions only at the ab-
stract level of reading or writing to a location; the concrete
values representing these permissions are largely irrelevant.

In this paper we present a solution to this problem. Our
approach gives a useful and flexible semantics to a clean syn-
tax for talking about access rights, and allows the user to
reason at the abstract level of read and write permissions.
Our methodology is expressive, modular, and supports rea-
soning using locks/monitors, fork/join of threads, as well as
loops and method calls. We have implemented a prototype
in a modified version of the verification tool Chalice [3, 4].

Introductory Example.
Let us use a simple example to illustrate the problem of

writing specifications with fractional permissions. Consider
a method Twelve that reads a field f and writes another
field g as some function of f, here the product of 12 and
f. The precondition of Twelve will thus require full (write)
permission to g, which we will denote by acc(this.g, 1), and
read permission to f, written acc(this.f,π) for some non-
zero fraction π. Here and throughout, we use a Chalice-like
syntax, but there are other notations in use; for example, in
separation logic [8, 6], these conditions are written:

this.g
17→ ∗ this.f

π7→

The postcondition of the method will ensure that these per-

missions are returned to the caller, so the full specification
of the method has the following form:

method Twelve()
requires acc(this.g,1) && acc(this.f,π)
ensures acc(this.g,1) && acc(this.f,π)

The central problem is: what is π?
One option is to represent π as a particular rational num-

ber, like .18. It is easy to see that this option can be rather
limiting, because it forbids calls from a context where the
caller has only, say, the fractional permission .17 to f, de-
spite the fact that such a fraction does imply read access.

A second option is to let the calling context decide what
π should be for a particular call. This can be achieved by
making π a parameter of the method. The parameter can
be considered a ghost parameter, since it is needed only for
the proof and can be omitted in the executing program.

method Twelve(ghost π: rational)
requires 0 < π && π <=1 &&

acc(this.g,1) && acc(this.f,π)
ensures acc(this.g,1) && acc(this.f,π)

In separation logic, such a parameter π is typically coded as
a logical variable that is bound for each invocation of the
method, but that is really the same thing as passing a ghost
parameter. This option provides flexibility for callers, but
comes at the cost of cluttering up the specification.

A third option is to use counting permissions [1], which al-
low one to split a write permission into any positive number
of indivisible units. A unit then grants read access. Chalice
supports counting permissions by providing a unit ε, which
is a positive, arbitrarily small, and indivisible constant [3].
To indicate one ε of permission, one can now use a notation
like rd(this.f), which yields the following specification:

method Twelve()
requires acc(this.g,1) && rd(this.f)
ensures acc(this.g,1) && rd(this.f)

The trouble with this option is that the indivisible nature of
ε does not respect procedural abstraction, that is, the prop-
erty that an implementation can choose how to establish
what the specification says. Consider an implementation of
Twelve that first calls subroutines Eight and Four (each of
which requires one ε permission to f), and then combines
the results of these. Since these subroutines just read f, it
seems reasonable that Twelve could call them in parallel. But
to make the calls in parallel would require 2 ε permissions,
which Twelve does not have. Hence, the indivisible nature of
ε would necessitate different specifications of methods, de-
pending on how many threads need concurrent read access,
which goes against the grain of procedural abstraction.

In this paper we present a specification methodology for
permissions that provides most of the flexibility and expres-
siveness of fractional permissions, without requiring a con-
crete mathematical representation. In a nutshell, we allow
programs to use abstract read permissions with a meaning
similar to acc(this.f,π) as in the second option above, but
without requiring the user to manually specify the π values.

2. BACKGROUND
Chalice is a concurrent programming language and a pro-

gram-verification tool [3]. Chalice associates permissions
with memory locations, as described in the introduction,

and the permissions (notionally) held by a method activation
can be fractional [2]. The Chalice language builds in spec-
ification constructs, like the pre- and postconditions shown
in the introductory example above. The specifications are
written in the style of implicit dynamic frames [9], which
means they include access predicates like acc and rd. Access
predicates instigate the transfer of permissions at the point
where the specification takes effect. For example, a method
precondition acc(this.f,p) says that, at the time of a call
to the method, a fraction p of the permission1 to this.f is
transferred from caller to callee, and the caller meets the
precondition only if it possesses at least this amount of per-
mission to this.f at the time of call.

The semantics of Chalice [3] is formalized using, in a stan-
dard way, a variable H that maps memory locations to val-
ues. To keep track of permissions, the formalization also
associates with each method activation a map P from mem-
ory locations to the method activation’s permission to that
location. Initially, the permission mask is empty, that is 0
for all locations. The semantics of read and write statements
in Chalice are then defined as follows: for x := o.f;,

assert o 6= null ∧ P[o, f] > 0; x := H[o, f];

and for o.f := x;,

assert o 6= null ∧ P[o, f] = 1; H[o, f] := x;

where an assert indicates a proof obligation that has to be
checked by the verifier.

The treatment of specifications is formalized using two op-
erations inhale and exhale. Analogously to sequential verifi-
cation, in which a method precondition is checked at a call
site and assumed inside the method body, Chalice says that
the caller exhales the precondition and the callee inhales it.

The inhale and exhale operations are defined recursively
over the syntax of specifications. For an expression E with-
out access predicates, exhaling E means assert E and in-
haling E means assume E, where assume indicates a con-
dition that the verifier is allowed to assume. Exhaling an
access predicate acc(o.f, p) means

assert p ≤ P[o, f]; P[o, f] := P[o, f]− p;

Inhaling acc(o.f, p) is its dual, but with a twist:

if (P[o, f] = 0) { havoc H[o, f]; } P[o, f] := P[o, f] + p;

where havoc sets the given location to an arbitrary value.
The conditional havoc in the definition of inhale is crucial
to the correct modelling of state updates by other method
activations, including those in different threads. It says that
if a memory location o.f was not previously readable by the
current method activation, then nothing is known about its
value (other than any properties that are assumed in the rest
of the inhale operation). In contrast, if the current method
activation already holds a non-zero permission to o.f, no
other method activation can have the full (write) permis-
sion to o.f, and so whatever the current method activation
already knows about the value o.f can be soundly retained.

Because of the recursive definition of exhale, to exhale
an expression such as acc(o.f,p) && acc(o.f,p) we exhale
acc(o.f,p) twice; the expression is essentially equivalent to
acc(o.f,2p) (the conjunction behaves multiplicatively). This

1Permission amounts are strictly positive; see Section 5.

accurately reflects that permissions should be treated as re-
sources, avoiding the duplication or accidental merging of
permissions. This conjunction can be formally related to
the separating conjunction of separation logic [7].

The current version of Chalice denotes fractional permis-
sions by acc(o.f, p), where p is an integer percentage be-
tween 1 and 100, and counting permissions by rd(o.f), which
denotes one ε permission, discussed as the third option in
the introductory example. acc(o.f) is an abbreviation of
acc(o.f, 100) and denotes a write permission. In this pa-
per, we abandon percentages and ε permissions; the syntax
of our new permission model distinguishes only between read
and write permissions, and redefines rd to have a more flex-
ible semantics than that used before.

3. THE NEW PERMISSION MODEL
The motivation for our permission model is to allow the

user to reason abstractly, at the level of read/write permis-
sions. To enable this view, we use two main kinds of permis-
sions. A full permission (corresponding to a “1”-valued frac-
tional permission) to a location o.f is denoted by acc(o.f,1)
or, for brevity, simply acc(o.f). Such a full permission al-
lows a thread to both read and write the location. A cor-
responding read permission is denoted by acc(o.f,rd) or
simply rd(o.f). These read permissions are abstract in the
sense that they do not concretely specify an associated math-
ematical fraction of the full permission. Such a permission
can be understood to represent a fixed, positive and unknown
amount of permission to o.f. The fact that a read permis-
sion represents a positive amount of permission means it is
sound to assume that we can read from the location, regard-
less of what the actual amount is.

In our permission model, the concrete permission amounts
associated with rd(o.f) permissions are never chosen, but
these values are constrained at various points, to give useful
properties. Note that we do not insist that the amount of
permission associated with each rd predicate is the same; in
general, two such read permissions correspond to different
fractional permissions, regardless of whether or not they are
concerned with the same location. The main challenge in
our design is to identify where and how we should constrain
these values to express useful specification cases.

3.1 Method Implementations
One common idiom is that a method requires some per-

mission to a location o.f and returns this permission to its
caller. That is, both the pre- and postcondition mention
some read predicate rd(o.f). In this case, we want to be
able to express the common situation that we return the
same amount of permission to the caller, who may then be
able to recombine this permission to obtain full permission
again. For instance, consider the following example:

method main(c: Cell)
requires acc(c.val)

{
c.val := 0
call m(c)
c.val := 1

}
method m(c: Cell)

requires rd(c.val)
ensures rd(c.val)

{ /* ... */ }

Even though method m requires read access to c.val, it is
desriable that it is still possible to write to the location after
a call to m if we started with write access to this location. For
this reason, if rd(o.f) occurs in both the pre- and postcon-
dition of a method, it should be interpreted as the same
(fixed, unknown) amount. Because we cannot statically
know full aliasing information, this would not be enough
to prove methods that return the same permission to the
caller, but via some other reference to the same object. For
this reason, we use a simple rule: For any given method
call, every rd predicate occurring in the method contract is
interpreted as holding the same fixed amount of permission.

To verify a particular method implementation, we first fix
a fraction πmethod, which is used to interpret any rd predicate
in the contracts of that method. No precise value is given
to πmethod, we assume only that it is a valid permission:

0 < πmethod ≤ 1

Otherwise, the method is verified as usual: we inhale the
precondition, execute the method body and then exhale the
postcondition. Because we do not choose a specific value
form πmethod, a successful verification actually proves that
the method is correct for any permission amount πmethod.

3.2 Method Calls
A call to a method m is verified using m’s contract, which

may mention read permissions. Since we verify that the im-
plementation of m is correct for any permission amount that
one might use to interpret its read permissions, the caller is
free to choose any fraction to interpret those permissions.

If the called method m requires a read permission to some
location o.f, we only need to check that we currently hold
a positive amount of permission to o.f. If we do, intuitively
we can always find a (positive) fraction that is smaller than
what we currently hold, and we can give this permission
amount to the method. We again use an underspecified
fraction πcall to interpret all rd predicates in the specification
of such a called method m. πcall is constrained to be a positive
amount that is less than the permission currently held, for
any location for which read access is required by m.

At a method call we first introduce a variable πcall >
0. Then, we exhale the called method’s precondition. For
each read permission to be exhaled (i.e., each occurrence
of rd(o.f) for some o.f), we check that we have a positive
amount of permission in our mask to o.f, and we constrain
πcall to be smaller than this positive amount we currently
hold. Next, we subtract πcall from the permission mask and
continue through the precondition. This encoding ensures
that the called method m is provided with the required read
permissions for each relevant location while m’s caller also
retains read permissions to those locations. The latter lets
the caller prove that m does not modify those locations.

We can now see why interpreting all read permissions in a
method specification as representing the same amount (re-
gardless of the corresponding memory location) is not a
restriction: the amount is always implicitly chosen to be
smaller than any corresponding amount held by the caller.
If multiple read permissions to the same location are men-
tioned, then we effectively just assume that we can find a
fraction that is small enough such that giving away all of
those read permissions is allowed. This is achieved by con-
straining πcall multiple times, once for every read permission.

After a call to a method m, we inhale m’s postcondition,

using the same value πcall to interpret any rd permissions
mentioned. This allows us to regain the same amount of
permission we have given away, if it is mentioned in both the
pre- and postcondition. So in the above example, method
main regains write permission to c.val after the call to m and
thus, may update the field.

Note that, because a different fraction is used for each
method activation, the scheme described above works even
for recursive method definitions (which would not easily be
the case using concrete fractions).

3.3 Asynchronous Method Calls
Chalice supports asynchronous method calls, using fork

and join statements. A statement tk := fork m() forks off
a new thread that executes the method m, and returns a to-
ken which can be used to join the thread and wait on the
result r of the call, using a statement r := join tk. The ver-
ification of asynchronous calls is analogous to synchronous
calls; when a thread is forked to execute a method m, the
method’s precondition is exhaled; its postcondition is in-
haled only when the forked thread is joined.

For the same reasons as for synchronous method calls, it
is convenient to interpret all rd permissions mentioned in
a method specification as representing the same permission
amount. In particular, if a fork and its corresponding join
occur in a scoped fashion (in the same method body), we
would like to be able to express that we can match up the
same permission amounts from corresponding rd predicates.
We encode this by adding a ghost field to tokens, which
represents the permission amount used to interpret rd pred-
icates for the associated asynchronous call. We store this
value in the ghost field when a token is created at a fork
statement, and refer to it when interpreting the permissions
returned at a join. This value is never changed; if we en-
counter fork/join statements on the same path through a
method body, the same permission fraction is known to be
used for both. However, if the join takes place in a differ-
ent method body, no information will be known about this
fraction; it is effectively arbitrary (although positive). In
Section 5 we show how to avoid this loss of information.

3.4 Monitors
Chalice allows any object to be a monitor. Initially, any

object is thread-local, and it can be made available using
the statement share. A monitor has an associated moni-
tor invariant, describing the permissions held and proper-
ties guaranteed while the monitor is shared and unlocked.
A thread that holds the monitor of an object o can also make
the object thread-local again, using a statement unshare o.
For verification purposes, when an object is being acquired
or unshared, the monitor invariant is inhaled, and when the
lock is released or shared, it is exhaled. Permissions to a lo-
cation are sometimes split over several monitors, such that
each monitor stores only a read permission; consequently,
we need our methodology to give an appropriate semantics
to rd predicates in monitor invariants.

For read permissions in monitor invariants, it is useful
to be able to prove that when a monitor is released and
later re-acquired, the same fraction is exhaled and inhaled.
The same is true for sharing and later un-sharing the mon-
itor. Using the same fraction in the release/acquire (or
share/unshare) pair is sound only if each acquire/release
pair that might be executed in between leaves the permis-

sion stored in the monitor unchanged. We enforce this by
fixing the fraction πmonitor used for interpreting read permis-
sions in a monitor invariant when the corresponding object
is created. It is constant throughout the object’s lifetime
and used whenever the invariant is exhaled or inhaled.

Choosing the interpretation of read permissions as soon
as the object is created is less flexible than our approach for
method calls, where we choose an amount for each individual
call. For instance, if we have a read permission to a loca-
tion o.f, we cannot share an object that mentions rd(o.f)
in its monitor invariant. The problem is that the fraction
we currently hold might be smaller than πmonitor, which is
constrained only by 0 < πmonitor ≤ 1. An example that does
not verify because of this inflexibility is the following:

class C {
method main(l: Lock)

requires rd(l.f)
{

release l // Err: possibly insufficient permission
}

}
class Lock { var f: int; invariant rd(f) }

We present two solutions to this problem in this paper.

4. LOSING PERMISSION
It is usually beneficial to use the same permission fraction

to interpret rd permissions for the pre and postcondition
of one method call, and similarly for the monitor invariant
of one object. However, this can be too restrictive when
methods give away permissions during execution, or simi-
larly when permission is given away between acquiring and
releasing a monitor (perhaps to other threads, or to a newly-
shared monitor invariant). For example, consider a method
m that requires read access to fields f and g of some object
c. Suppose that m forks off a worker thread that requires
read permission to c.g, but does not join that thread. After
the fork, m still has read permission to c.g. However, with
the encoding introduced so far, we cannot return this per-
mission to the caller. Putting rd(c.g) in m’s postcondition
would require m to return the exact fraction that it received
from its caller. However, that is not possible when part of
that fraction has been passed to the worker thread.

To handle these situations, we introduce a starred read
permission, denoted by rd*(c.g). This has the meaning of
introducing another positive, but otherwise unrelated frac-
tional amount. In particular there is no guarantee that it
corresponds to the same amount as any other permission
used in the same method signature or monitor invariant. Be-
cause no information about this permission amount (other
than it being positive) is ever assumed, when exhaling such
a rd* predicate it is sufficient just to check that some per-
mission to the appropriate location is available, and then to
assume the actual amount to be smaller than this.

Starred read permissions are useful for method postcondi-
tions and monitor invariants, but not for method precondi-
tions, for which the caller is free to choose an interpretation
anyway. Similarly, the standard read permission rd is useful
in method preconditions and monitor invariants. In method
postconditions, it makes only sense when the precondition
also contains a standard read permission. Otherwise, the
fraction used for the interpretation is arbitrary, and it would
be clearer to use a starred read permission rd*.

Using this new permission syntax, we can then specify the
example described above as:

method m(c: Cell)
requires rd(c.f) && rd(c.g)
ensures rd(c.f) && rd*(c.g)

{
tk := fork worker(c)

}
method worker(c: Cell)

requires rd(c.g)
ensures rd(c.g)

{ /* ... */ }

5. PERMISSION EXPRESSIONS
Using our design so far, we cannot denote the amounts

of permission associated with rd predicates in a particular
monitor, or in the specification of a particular forked thread.
In situations where we do not need to be precise about these
amounts, the rd* predicates allow us to abstract them away,
but this is necessarily at the expense of precision; as soon as
a rd* predicate is used, the permission to that location can-
not be recombined to give a full permission any more. For
example, in cases where we use fork/join or release/acquire
across method boundaries, so far we cannot preserve the in-
formation about these permission amounts. We also have
no way in the model to express the difference between two
permission amounts. For instance, if we start with a full
permission and give away a rd permission, we cannot yet
express what we have left over, which (as we will see) is
essential for some examples. In this section we introduce
permission expressions, which amend these defects.

We generalise accessibility predicates to the new form
acc(o.f,P) where P is a permission expression. Permission
expressions P are defined inductively as follows:

P ::= 1 full permission
| rd read permission
| rd(tk) token read permission
| rd(o) monitor read permission
| P1 + P2 permission addition
| P1 − P2 permission subtraction

where tk is a token and o is a reference-typed expression

The permission expressions 1 and rd are used as before, to
denote full and read permissions in a specification (where the
read permissions are interpreted depending on the context;
e.g., per method call if used in a method specification). The
expressions rd(tk) and rd(o) are new, and can be used to
refer to the amount of permission associated with read per-
missions for a particular asynchronous call (via its token)
or monitor. Finally, we support addition and subtraction of
permission expressions. This allows us to express differences
such as 1 - rd(o), meaning that we hold a full permission
minus the permission amount associated with rd predicates
for the monitor o (in such a case, acquiring the monitor
would be enough to regain a full permission).

There is one technical difficulty to consider for this exten-
sion: because the permission expressions P can include sub-
tractions, it is possible to write expressions such as rd - 1 or
rd - rd(tk) which are not guaranteed to denote valid (that
is, positive) permission amounts. Exhaling such permission
amounts näıvely could result in a total permission of more
than 1 in a method activation record, leading to unsound-
ness. In addition, if we allowed permission expressions to

potentially denote zero permission, we would effectively in-
troduce the need, whenever such a permission is inhaled, of
considering cases for whether or not any positive permis-
sion is received. To avoid these complications, we impose an
additional well-formedness constraint, that a permission ex-
pression P must provably denote a strictly positive amount
of permission, whenever it is exhaled.

The example in Listing 1 illustrates the use of permis-
sion expressions. It shows pseudo-code for a program in
which some optimization problem should be solved. The
class Solver takes a problem instance and, via the method
start, forks off a probabilistic search for a solution (method
solve) and returns a token to its caller with which the result
can be retrieved. This way several threads can work concur-
rently on the same problem to increase the probability of
finding an optimal solution.

class Client {
method main(p: Problem, s : Solver) returns (r: int)

requires acc(p.f)
ensures acc(p.f)

{
tk1 := call s.start(p)
tk2 := call s.start(p)

r1 := join tk1; r2 := join tk2
r := max(r1,r2)

}
}
class Solver {

method start(p: Problem)
returns (tk: token<Solver.solve>)
requires rd(p.f)
ensures acc(p.f, rd-rd(tk))

{ /* initialize, etc. */ tk := fork solve(p) }

method solve(p: Problem) returns (r: int)
requires rd(p.f); ensures rd(p.f)

{ /* ... */ }
}
class Problem { var f:int; }

Listing 1: Example using generalized permissions.

In our example, the client uses two threads and combines
their results after joining the tokens. We assume that the
attempts to solve the Problem require read access to the prob-
lem data, represented by the field f. The client starts with
full access to this field, and would like to regain full ac-
cess before it terminates. Since the method solve requires
and returns read access to the problem data, we specify this
with appropriate rd predicates. The method start has to
fork a call to solve, and thus also needs read permission to
p.f in its precondition. However, it does not return all of
this permission to its caller; some is passed to the forked
thread. It returns to the caller the “left over” permission,
along with the token for the forked thread, using permission
expressions: acc(p.f,rd-rd(tk)).

This specification supports a flexible concurrent imple-
mentation without concrete permission values, and provides
enough information to the client code to guarantee that the
full permission can be regained after joining the two threads.
The starred read permission we have seen earlier is still use-
ful in cases where the same amount is not desired.

Note that in our new permission model, permission ex-
pressions replace Chalice’s percentage-expressions. A com-
mon idiom in Chalice is to split a full permission over two

monitors (or over a monitor and a method precondition), for
instance, by specifying acc(x.f,40) for one and acc(x.f,60)
for the other. The full permission is then obtained by acquir-
ing both monitors. We achieve the same effect by specifying
acc(x.f,rd) for one and acc(x.f,1-rd) for the other, with-
out committing to arbitrary percentages. Consequently, we
drop percentage-permissions from the language.

6. IMPLEMENTATION
We have implemented our new permission model in the

Chalice program verifier. To evaluate the performance of our
approach we compared execution times of existing examples
using our prototype implementation and the original Chalice
version. We used the 29 programs from the Chalice test
suite. These have an average verification time of 4.5 seconds
on our test machine. Four of the test cases required trivial
changes to reflect the changes in the permission model.

The comparison shows that our implementation provides
very similar speed; on average our implementation is 3.6%
faster, and the performance changes range from -3.1% up
to 50.6%. At this point it is not entirely clear why some
of the examples perform significantly better with the new
permission model. It appears that especially larger examples
can be verified faster with our new permission model.

7. CONCLUSIONS AND FUTURE WORK
We have presented a methodology for specifying concur-

rent programs using a notion of splittable permissions, but
without the need for the specifier to reason using a concrete
mathematical model or syntax. This makes specifications
less verbose and tedious to write, but more importantly al-
lows them to express the programmer’s intentions at the cor-
rect level of abstraction; ultimately it is sufficient to know
the locations a thread can currently read and write to, in
order to understand (and verify) its intended behaviour. By
picking a judicious default semantics for read permissions
in method contracts, we are generally able to retain the
expressiveness afforded by concrete specifications. In im-
plementations which pass read permissions between threads
and monitors in flexible ways, while eventually recombining
them into full permissions, our simple permission expres-
sions allow for specifications which are precise about the im-
portant relationships between permission values, while still
freeing the specifications from a concrete model or values.
This also allows for greater flexibility when building veri-
fiers such as Chalice; underlying design decisions about the
concrete handling of permissions are invisible at the source
level, allowing the underlying implementation to be seam-
lessly changed. As an example, we plan for future work to
experiment with encoding permissions as rational and real
numbers (as supported by the Z3 theorem prover) and com-
pare performance. These experiments will not require any
change to our specification methodology or surface syntax.

Our permission expressions support a bounded number of
read permissions to be added/subtracted. A natural exten-
sion is to handle the unbounded case. For example, our ran-
domised algorithm example in Listing 1 could be extended
to fork off some statically-unknown number of solvers in a
loop, and then rejoin all of the corresponding tokens. This
would require permission expressions to express mathemati-
cal sums over permission amounts. In the example we would
sum over indexed sequences of rd(tki) expressions.

Recent work of Militão et al. [5] generalises fractional per-
missions to user-defined views, which can describe permis-
sions to sets of fields, and extra properties such as unique-
ness of references. They also employ fractions whose values
are hidden from the user, but do not have an analogue to
permission expressions in specifications (cf. Section 5).

The possibility of reasoning about permissions in the ab-
sence of any concrete mathematical model is itself interest-
ing. We are interested in further exploring our methodology
in its own right, without the need per se of any interpre-
tation of the underlying values of read permissions. Our
work seems potentially to provide a means of explaining
and formalising the use of permissions (which are merely
a reasoning tool themselves), at a level of abstraction which
corresponds with programmers’ thinking about their code.

Acknowledgements
We would like to thank the attendees of the Dublin Concur-
rency Workshop 2011, particularly Andrew Butterfield and
Peter O’Hearn, for encouraging feedback on a preliminary
presentation of this work.

8. REFERENCES
[1] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson.

Permission accounting in separation logic. In Principles
of Programming Languages (POPL), pages 259–270.
ACM, 2005.

[2] J. Boyland. Checking interference with fractional
permissions. In R. Cousot, editor, Static Analysis
(SAS), volume 2694 of LNCS, pages 55–72. Springer,
2003.

[3] K. R. M. Leino and P. Müller. A basis for verifying
multi-threaded programs. In G. Castagna, editor,
European Symposium on Programming (ESOP), volume
5502 of LNCS, pages 378–393. Springer, 2009. Open
source code at boogie.codeplex.com.

[4] K. R. M. Leino, P. Müller, and J. Smans. Verification
of concurrent programs with Chalice. In A. Aldini,
G. Barthe, and R. Gorrieri, editors, Foundations of
Security Analysis and Design V: FOSAD
2007/2008/2009 Tutorial Lectures, volume 5705 of
LNCS, pages 195–222. Springer, 2009.

[5] F. Militão, J. Aldrich, and L. Caires. Aliasing control
with view-based typestate. In Formal Techniques for
Java-Like Programs, FTFJP ’10, pages 7:1–7:7. ACM,
2010.

[6] M. Parkinson and G. Bierman. Separation logic and
abstraction. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’05, 2005.

[7] M. J. Parkinson and A. J. Summers. The relationship
between separation logic and implicit dynamic frames.
In G. Barthe, editor, European Symposium on
Programming (ESOP), volume 6602 of LNCS. Springer,
2011.

[8] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Logic in Computer Science
(LICS). IEEE, 2002.

[9] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic
frames: Combining dynamic frames and separation
logic. In European Conference on Object-Oriented
Programming (ECOOP), pages 148–172. Springer, 2009.

