Announcements

We will go over map and fold activities from last Thursday during the next class.

algebraic datatypes

datatype treat =
 SNICKERS
| TWIX
| TOOTSIE_ROLL
| DENTAL_FLOSS

• Each option is really a constructor in disguise.
• Those constructors can take parameters.

algebraic datatypes

datatype bag_o_treats =
 SNICKERS of int
| TWIX of int
| TOOTSIE_ROLL of int
| DENTAL_FLOSS of int

• Each option is really a constructor in disguise.
• Those constructors can take parameters.
• ADTs are known as “disjoint unions” in SML (or “tagged unions”, or “discriminated unions”, or “variant”, or “choice type”, or “sum type”, ...)
pattern matching ADTs with params

```haskell
fun count_treats bag = 
  case of bag
    SNICKERS i => i
  | TWIX i => i
  | TOOTSIE_ROLL i => i
  | DENTAL_FLOSS i => i
```

or just...

```haskell
fun count_treats (SNICKERS i) = i
  | count_treats (TWIX i) = i
  | count_treats (TOOTSIE_ROLL i) = i
  | count_treats (DENTAL_FLOSS i) = i
```

type checking is exhaustive for ADTs
(this is occasionally exhausting for humans)

```
datatype Expr =
  Foo of int |
  Bar of real |
  Baz of string

fun eval (Foo f) = "foo " ^ (Int.toString f)
  | eval (Baz b) = "baz " ^ b
```

stdIn:16.5-17.30 Warning: match nonexhaustive
 Foo f => ...
 Baz b => ...

it does, however, now cause a dynamic error instead; use sparingly!
type checking
(or, "how does ML know that my expression is wrong?")

fun f(x:int) : int = "hello " + x

stdIn:27.12-27.24 Error: operator and operand don't agree [overload conflict]
operator domain: [+ ty] * [+ ty]
operand: string * int
in expression:
 "hello " + x

step 1: convert into lambda form

fun f(x:int) : int = "hello " + x
f = λx."hello " + x convert into λ expression
f = λx.((+ "hello ") x) assume + = λx.λy.[[x + y]]

The purpose of this step is to make all of the parts of an expression clear
(real compilers may/may not actually do this step)

step 2: generate parse tree

f = λx.((+ "hello ") x)
f has form λx.((MM)M)

step 3: label parse tree with types

read ":" as "has type"

: int → int
x : int
"hello ": string
type checking

step 4: check that types are used consistently

1. Start at the leaves
2. Do type mismatches arise?
 - Yes = type error
 - No = type safe
3. if yes, stop and report first mismatch

```
λ :int → int → int @ string
int @ int → int @ int
@ :int @ int
x :int
+ x :int
“hello “ :string
```

type inference

notice that we had a typed expression

```
fun f(x:int) : int = “hello “ + x
```

what if, instead, we had

```
fun f(x) = “hello “ + x
```

Hinley-Milner algorithm

- Hindley and Milner invented algorithm independently.
- Infers types from known data types and operations used.
- Depends on a step called 'unification'.
- I will demonstrate informal method for unification; works for small examples

Hinley-Milner algorithm

Has three main phases:

1. **Assign type** to each expression and subexpression
2. **Generate type constraints** based on rules of \(\lambda \) calculus:
 - Abstraction constraints
 - Application constraints
3. **Solve type constraints** using unification.

J. Roger Hindley

Robin Milner
type inference

step 1: label parse tree with known/unknown types

fun f(x) = 5 + x
f = λx.((+ 5) x)

I am using the example from book so that you can follow along at home!

type inference

it is often helpful to have types in tabular form

<table>
<thead>
<tr>
<th>subexpression</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>int → int → int</td>
</tr>
<tr>
<td>5</td>
<td>int</td>
</tr>
<tr>
<td>(+5)</td>
<td>r</td>
</tr>
<tr>
<td>x</td>
<td>s</td>
</tr>
<tr>
<td>(+5)x</td>
<td>t</td>
</tr>
<tr>
<td>λx.((+ 5) x)</td>
<td>u</td>
</tr>
</tbody>
</table>

type inference

step 2: generate type constraints using λ calculus

M ::= x variable
| λx.M abstraction
| MM function application

Abstraction rule: If the type of x is a and the type of M is b, and the type of λx.M is c, then the constraint is c = a → b.

Application rule: If the type of M₁ is a and the type of M₂ is b, and the type of M₁M₂ is c, then the constraint is a = b → c.
type inference

step 3: unify

Start with the topmost unknown. What do we know about \(r \)?

\[
\begin{align*}
\text{int} & \rightarrow \text{int} = \text{int} \rightarrow \text{int} \\
\text{int} & \rightarrow \text{int} = \text{int} \rightarrow \text{int} \\
\text{int} & \rightarrow \text{int} = \text{int} \\
\text{int} & \rightarrow \text{int} = \text{int} \\
\end{align*}
\]

What do we know about \(s \) and \(t \)?

\[
\begin{align*}
\text{int} & \rightarrow \text{int} = \text{int} \\
\end{align*}
\]

What do we know about \(u \)?

\[
\begin{align*}
\text{int} & \rightarrow \text{int} = \text{int} \\
\end{align*}
\]

Done when there is nothing left to do

(we will talk about polymorphic type inference next class)
completed type inference

fun f(x) = 5 + x
f = \lambda x.(+ 5) x

\[
\begin{array}{c}
\lambda : \text{int} \rightarrow \text{int} \\
\times : \text{int} \\
\oplus : \text{int} \rightarrow \text{int} \\
5 : \text{int} \\
\rightarrow : \text{int} \rightarrow \text{int} \rightarrow \text{int}
\end{array}
\]