
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 6: ML II

Announcements

HW3 is now out.

I will assume that you want to stay with your current

partner. If this is not true, email me by tomorrow night

and I will pair you with another student.

Announcements

midterm: before or after spring break?

“before” wins (by a lot)

Announcements

HW0

Announcements

HW1 solutions handout

(fix: S2 is not worth 40 points!)

Announcements

Reminder: Thursday help (poorly attended)

Static vs. dynamic environments

fun add_one x = x + 1

What do we know about x?

What about 1?

What about add_one?

Static vs. dynamic environments

fun add_one x = x + 1

What do we know about x?

What about 1?

What about add_one?

int

int; also 1

int -> int

Static vs. dynamic environments

Static environment:

Facts about a program that are always true.

E.g., data types.

Other static facts:

• “always halts”

• fn is named “add_one”

fun add_one x = x + 1

Static vs. dynamic environments

fun add_one x = x + 1

add_one 3

What do we know about x?

What about add_one 3?

Static vs. dynamic environments

fun add_one x = x + 1

add_one 3

What do we know about x?

What about add_one 3?

x = 3

add_one 3 = 4

Static vs. dynamic environments

Dynamic environment:

Facts about a program that are true for a given

invocation of the program.

E.g., values.

Other dynamic facts:

• “halts for given value”

fun add_one x = x + 1

Types

Data type: a set of values and permissible operations

on those values.

…, ~1.11, ~1.1, ~1.0, 0, 1.0, 1.1, 1.11, … ∈ real

+, -, <, >, <=, >=

Notice that = is not permitted
- 1.0 = 1.0;
stdIn:91.1-91.10 Error: operator and operand don't agree [equality
type required]
 operator domain: ''Z * ''Z
 operand: real * real
 in expression:
 1.0 = 1.0

Types

We usually can determine types statically.

Some languages where we do:

Java, Standard ML, Go, Rust, …

Some languages where we don’t:

Python, Ruby, Lisp, R, …

Types

ML’s uses a “structural type system”

Java uses a “nominal type system”.

Nominal Types
Types are equivalent if they use the same

name or if there is an explicit subtype

relationship between names.

int n = 3;

int m = 4;

n == m;

false

Matching names
class Animal …

class Cat extends Animal …

Animal a = new Animal();

Cat c = new Cat();

c.equals(a) == true (maybe)

Subtype relationship

Structural Types

Types are equivalent if they have the same

features. Base case in ML: same name;

inductive case: same composition of names.

val n = 3

val m = 4

n = m

false

Matching names
val a = (1,(2,”hi”))

val b = (1,(2,”hi”))

a = b

true

Structural relationship

map

This is essentially the same idea as in Lisp, but

it is type-safe.

val xs = [1,2,3,4]

map (fn x => x + 1) xs

val xs = [“a”,”b”,”c”]

map (fn x => x + 1) xs

OK

Not OK

fold

Like map, in that it operates over lists, but only

returns a single, “accumulated” object.

fun sum (l:int list):int =
 case l of
 [] => 0
 | x::xs => x + (sum xs)

fun concat (l:string list):string =
 case l of
 [] => ""
 | x::xs => x ^ (concat xs)

These look similar, no? Differences?

fold

Like map, in that it operates over lists, but only

returns a single, “accumulated” object.

fun sum (l:int list):int =
 case l of
 [] => 0
 | x::xs => x + (sum xs)

fun concat (l:string list):string =
 case l of
 [] => ""
 | x::xs => x ^ (concat xs)

These look similar, no? Differences?

fold

fun sum' (acc:int) (l:int list):int =
 case l of
 [] => acc
 | x::xs => sum' (acc+x) xs

fun concat' (acc:string) (l:string list):string =
 case l of
 [] => acc
 | x::xs => concat' (acc^x) xs

Rewrite to add an accumulator variable

sum’ 0 [1,2,3,4]

concat’ “” [“hello”, “world”]

fold

fun sum' (acc:int) (l:int list):int =
 case l of
 [] => acc
 | x::xs => sum' (acc+x) xs

fun concat' (acc:string) (l:string list):string =
 case l of
 [] => acc
 | x::xs => concat' (acc^x) xs

Rewrite to add an accumulator variable

sum’ 0 [1,2,3,4]

concat’ “” [“hello”, “world”]

fold

Rewrite to abstract over operation and type.

fun f x y = x + y

val f = fn : int -> int -> int

fun sum' (acc:int) (l:int list):int =
 case l of
 [] => acc
 | x::xs => sum' (acc+x) xs

What is the function here?

fold

Rewrite to abstract over operation and type.

fun f x y = x ^ y

val f = fn : string -> string -> string

What is the function here?

fun concat' (acc:string) (l:string list):string =
 case l of
 [] => acc
 | x::xs => concat' (acc^x) xs

fold

What is the type of the function that “abstracts

over” the first and second f’s?

fun f x y = x ^ y

val f = fn : string -> string -> string

fun f x y = x + y

val f = fn : int -> int -> int

val f = fn : ‘a -> ‘a -> ‘a

fold

We now write a generic accumulation function.

fun foldl (f: 'a*'b->'b) (acc: 'b) (l: 'a list): 'b =
 case l of
 [] => acc
 | x::xs => foldl f (f(x,acc)) xs

fun sum' (acc:int) (l:int list):int =
 case l of
 [] => acc
 | x::xs => sum' (acc+x) xs

fun concat' (acc:string) (l:string list):string =
 case l of
 [] => acc
 | x::xs => concat' (acc^x) xs

fold (left)

sum and concat using foldl:

fun foldl (f: 'a*'b->'b) (acc: 'b) (l: 'a list): 'b =
 case l of
 [] => acc
 | x::xs => foldl f (f(x,acc)) xs

fun sum (l:int list):int =
foldl (fn (x,acc) => acc+x) 0 l

fun concat (l:string list):string =
foldl (fn (x,acc) => acc^x) "" l

fold (right)

fun foldr (f:'a*'b->'b) (accum:'b) (l:'a list):'b =
 case l of
 [] => acc
 | x::xs => f(x, (foldr f acc xs))

fun foldl (f: 'a*'b->'b) (acc: 'b) (l: 'a list): 'b =
 case l of
 [] => acc
 | x::xs => foldl f (f(x,acc)) xs

compare with

Activities

