
DUANE’S INCREDIBLY BRIEF INTRO TO C

The one best book on C is The C Programming Language by Kernighan and Richie.

The ’g’ in ’Kernighan’ is silent.

CODE

 Code for execution goes into files with ".c" suffix.

 Shared decl’s (included using #include "mylib.h") in "header" files, end ".h"

COMMENTS

 Characters to the right of // are not interpreted; they’re a comment.

 Text between /* and */ (possibly across lines) is commented out.

DATA TYPES

 Name Typ. size Description

 char 1 byte an ASCII value: e.g. ’a’ (see: man ascii)

 short 2 bytes a signed 16-bit integer.

 int 4 bytes a signed integer: e.g. 97 or hex 0x61, oct 0x141

 long 8 bytes a longer mult-byte signed integer

 float 4 bytes a floating-point (possibly fractional) value

 double 8 bytes a double length float

 long double 16 b a double length float

char, int, and double are most frequently & easily used in small programs

sizeof(double) computes the size of a double in addressable units (bytes)

Zero values represent logical false, nonzero values are logical true.

Math library (#include <math.h>, compile with -lm) prefers double.

"unsigned" type modifier stores only non-negative numbers. No equiv. in Java.

CASTING

Preceding an primitive expression with an alternate parenthesized type converts

or "casts" value to *new value* equivalent in new type:

 int a = (int)3.141; // assigns a=3, without complaint.

Preceding any other expr’n with a cast forces new type for *unchanged value*.

 double b = 3.141;

 int a = *(int*)&b; // interprets the double b as an integer (not 3!)

STRUCTS and ARRAYS and POINTERS and ADDRESS COMPUTATION

Structs collect several fields into a single logical type:

 struct { int n; double root; } s; // s has two fields, n and root

 s.root = sqrt((s.n = 7)); // ref fields ((N.B. double parens=>assign OK!))

Arrays indicated by right associative brackets ([]) in the type declaration:

 int a[10]; // a is a 10 int array. a[0] is first element. a[9] is last.

 char b[] // in function header, b is array of chars w/unknown length

 int c[2][3]; // c is an array of 2 arrays of 3 ints. a[1][0] follows a[0][2]

 Array variables (e.g. a,b,c) cannot be made to point to other arrays.

 Strings are represented as character arrays terminated by ASCII zero.

Pointers indicated by left associative asterisk (*) in the type declaration:

 int *a; // a is a pointer to an integer; don’t use int* a, as in Java.

 char *b; // b is a pointer to a character

 int *c[2]; // c is an array of 2 pointers to ints; same as int *(c[2]);

 int (*d)[2]; // d is a pointer to an array of 2 integers.

 Pointers are simply addresses. Pointer variables may be assigned.

 Adding 1 computes ptr to next value by adding sizeof(X) for base type X.

 General int adds to ptr (even negative or zero) follow in a obvious manner.

Addresses may be computed with the ampersand (&) operator.

 An array without an index or a struct without field computes its address:

 int a[10],b[20]; // two arrays

 int *p = a; // p points to (is address of) first int of array a

 p = b; // p now points to first int of array b; address assignment

 An array OR POINTER with an index n in square brackets returns nth value:

 int a[10]; // an array; zero-origin indexing

 int *p;

 int i = a[1]; // i is second element of a

 i = *a; // pointer dereference

 p = a; // same as p = &a[0] or p = a+0;

 p++; // same as p = p+1; same as p = &a[1]; same as p = a+1

 Bounds are never checked; your responsibility. Never assume. We’re adults.

 An arrow (-> no spaces!) dereferences a pointer to a field:

 struct { int n; double root; } s[1]; // s is pointer to struct or array of 1

 s->root = sqrt((s->n = 7)); // s->root same as (*s).root or s[0].root

 printf("%g\n",s->root);

FUNCTIONS

A function is a pointer to some code, parameterized by *formal parameters, that

may be executed by providing *actual parameters. Functions must be declared

before they are used, but code may be provided later. A sqrt function for

positive n might be declared

 double sqrt(double n) {

 double guess;

 for (guess = n/2.0; abs(n-guess*guess)>0.001; guess = (n/guess+guess)/2);

 return guess;

 }

This function has type "double (*sqrt)(double)".

 printf("%g\n",sqrt(7.0)); // calls sqrt; actuals always passed by value

Function parameters are *always passed by value*. Functions must return value.

The return value need not be used. Function name with no param’s evals to the

function pointer. An alias for sqrt may be declared:

 double (*root)(double) = sqrt

 printf("%g\n",root(7.0));

Procedures or valueless functions return ’void’.

In programs there must always be a main function that returns an int.

 int main(int argc, char **argv)

Programs arguments may be accessed as strings through main’s array argv with

argc elements. First is the program name. Function decl’s are never nested.

OPERATIONS

 +, -, *, /, % Arithmetic. WARNING: C doesn’t define / or %: arch. dep.

 ++i --i Add or subtract 1 from i, assign result to i, return new val

 i++ i-- Remember i, inc or decrement i, return remembered value

 && || ! Logical ops. Right side of && and || not eval’d unless nec.

 & | ^ ˜ Bit logical ops: and, or, xor, complement.

 >> << Shift right and left: int n = 10; n << 2 computes 40.

 = Assignment is an operator. Result is value assigned.

 += -= *= etc Perform binary op on lft and rght, assign result to left

 == != < > <= >= Comparison operators (useful only on primitive types)

 ?: If-like expression: (x%2==0)?"even":"odd"

 , compounding; value is last: a = b,c,d; exec’s b,c,d then a=d

STATEMENTS

<Angle brackets> identify syntactic el’ts and don’t appear in real statements.

 <expression> ; // semi indicates end of simple statement

 break; // quits tightest loop or switch case prematurely

 continue; // jumps to next loop test, skipping rest of loop body

 return x; // quits this function, returns x as value

 { <statements> } // {curly-bs} group stat’s into 1 compound. Note: no semi

 if (<condition>) <statement> // stmt executed if cond true (nonzero)

 if (<condition>) <statement> else <statement> // 2-way condition

 while (<condition>) <statement> // repeatedly exec stmt only if cond true

 do <statement> while (<condition>); // note semi. Statement often compound.

 for (<init>; <condition>; <step>) <statement>

 // <init> and <step> are assignents. above for is similar to

 <init> while (<condition>) { <statement> <step> }

 switch (<expression>) { // traditional "case statement"

 case <value>: <statement> // this statement exec’d if val==expr

 break; // quit this statment when val==expr

 case <value2>: <statement2> // exec’d if val2==expr

 case <value3>: <statement3> // exec’d if val3==expr OR val2==expr

 break; // quit

 default: <statement4> // if no other value; typ. last, not first

 break; // optional (but encouraged) quit

 }

KEY WORDS

 unsigned before primitive type suggests unsigned operations

 extern in global declaration => symbol is for external use (e.g. main)

 static in global declaration => symbol is local to this file

 in local decl => don’t place on stack; keep value between calls

 typedef before declaration defines a new type name, not a new variable

 mom not a keyword; true love, instantiated; call her

I/O (#include <stdio.h>; see man pages)

Default input comes from "stdin"; output goes to "stdout"; errors to "stderr".

Standard input and output routines are declared in stdio.h: #include <stdio.h>

 Function Description

 fopen(name,"r") opens file name for read, returns FILE *f; "w" allows write

 fclose(f) closes FILE *f (hereon: "file f")

 getchar() read 1 char from stdin or pushback; is EOF (int -1) if none

 ungetch(c) pushback char c into stdin for re-reading; don’t change c

 putchar(c) write 1 char, c, to stdout

 fgetc(f) same as getchar(), but reads from file f

 ungetc(c,f) same as ungetch(c), but onto file f

 fputc(c,f) same as putchar(c), but onto file f

 fgets(s,n,f) read strng of n-1 chars to s from f, or til eof or nl (kept)

 fputs(s,f) writes string s to f: e.g. fputs("Hello world\n",stdout);

 scanf(p,...) reads ... args using format p (below); put & w/non-pointers

 printf(p,...) write ... args using format p (below); pass args as-is

 fprintf(f,p,...) same, but print to file f

 fscanf(f,p,...) same, but read from file f

 sscanf(s,p,....) same as scanf, but from string s

 sprintf(s,p,...) same as printf, but to string s

 feof(f) return true iff at end of file f

 Formats use format characters preceded by escape %; other chars written as-is.

 char action char meaning

 %c character \n newline (control-j)

 %d/%o/%x decimal/octal/hex integer \t tab (control-i)

 %p/%s pointer/string \\ slash

 %g general floating point %% percent

"HEAP"-BASED DYNAMIC MEMORY (#include <stdlib>)

 malloc(n) alloc n bytes of memory; for type T: p = (T*)malloc(sizeof(t));

 free(p) free memory pointed at p; must have been alloc’d; don’t re-free

 calloc(n,s) alloc n-array size s & clear; typ: a = (T*)calloc(n,sizeof(T));

MATH (#include <math.h> and link -lm; sometimes documented in man math)

 All functions take & return double unless otherwise noted:

 sin(a),cos(a),tan(a) sine, cosine, tan of double radian angle a

 asin(y),acos(x),atan(r) principal inverse of above

 atan2(y,x) principal inverse of tan(y/x) in same quadrant as (x,y)

 sqrt(x) root of x

 log(x) natural logarithm of x; others: log2(x) and log10(x)

 exp(p) e to the power of p; others: exp2(x) and exp10(x)

 pow(x,y) x to the power of y; like exp(y*log(x))

 ceil(x) smallest integer (returned as double) no less than x

 floor(x) largest integer (returned as double) no greater than x

 #include <stdlib.h> for these math functions:

 abs(x) absolute value of x

 random() returns random long

 srandom(seed) sets random generator to use new long seed

STRINGS (#include <string.h>; sometimes documented in man string)

 strlen(s) return length of string; number of characters before ASCII 0

 strcpy(d,s) copy string s to d and return d; N.B. parameter order like =

 strncpy(d,s,n) copy at most n characters of s to d and terminate; returns d

 stpcpy(d,s) like strcpy, but returns pointer to ASCII 0 terminator in d

 strcmp(s,t) compare strings s and t and return first difference; 0=>equal

 strncmp(s,t,n) stop after at most n characters; needn’t be zero terminated

 memcpy(d,s,n) copy exactly n bytes from s to d; may fail if s overlaps d

 memmove(d,s,n) (slow) copy n bytes from s to d; won’t fail if s overlaps d

TIME (#include <time.h>; documented in man 3 time)

 time(0) current time (a long int) in seconds since 60’s ("The Epoch")

 mktime(struct tm*) convert date and time (in tm struct) to seconds since 60’s

 (see man mktime for tm struct details; N.B. month and year are strange)

COMPILING (documented in man gcc)

 gcc prog.c # compiles prog.c into a.out run result with ./a.out

 gcc -o prog prog.c # compiles prog.c into prog; run result with ./prog

 gcc -S prog.c # generates assembly code into prog.s

 gcc -g -o prog prog.c # as above, but allows for debugging

 gcc -O -o prog prog.c lib.c # compiles, links prog and lib together, optimize

 gcc -S -O prog.c # generates optimized assembly code into prog.s

 gcc -O3 -o prog prog.c -lX # link to lib libX (X=m for math); heavy optimize

 gcc -g -c prog.c # generate object file (not exec) prog.o for later linking

 gcc -Wall -o prog prog # all warnings; required quiet for credit in cs237

A GOOD FIRST PROGRAM

// My first program.

// (c) 2019 jeffrey mammoth

#include <stdio.h>

int main()

{

 printf("Hello, world.\n");

 return 0; // oft’ omitted

}

WORD COUNT (wc)

// Print number of words appearing on stdin.

// (c) 2015 ephriam amherst

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char **argv) // get additional cmd args

{

 // variables must be initialize; garbage otherwise

 int charCount = 0, wordCount = 0, lineCount = 0;

 int doChar=0, doWord=0, doLine=0, inWord = 0;

 int c;

 char *fileName = 0; // a null string pointer

 FILE *f = stdin; // a pointer to an existing file

 // process arguments: uncommon but useful code

 while (argv++, --argc) {

 if (!strcmp(*argv,"-c")) doChar=1;

 else if (!strcmp(*argv,"-w")) doWord=1;

 else if (!strcmp(*argv,"-l")) doLine=1;

 else if (!(f = fopen((fileName = *argv),"r")))

 { printf("Usage: wc [-l] [-w] [-c]\n"); return 1; }

 }

 // argument defaulting

 if (!(doChar || doWord || doLine)) doChar = doWord = doLine = 1;

 // read input by characters, counting along the way

 while (EOF != (c = fgetc(f))) {

 charCount++;

 if (c == ’\n’) lineCount++;

 if (!iswspace(c)) /* whitespace check */ {

 if (!inWord) { inWord = 1; wordCount++; }

 } else { inWord = 0; }

 }

 // report results

 if (doLine) printf("%8d",lineCount);

 if (doWord) printf("%8d",wordCount);

 if (doChar) printf("%8d",charCount);

 if (fileName) printf(" %s",fileName);

 printf("\n");

 return 0;

}

NOTES:

