Lecture 15: Treemaps
Stock Market Viz

S&P 500 Stock Market Treemap

size represents 'weight' of company
color represents 'change' in stock price

Price Change
- > 8
- 6 - 8
- 4 - 6
- 2 - 4
- 0 - 2
- 0 - 2
- 2 - 4
- 4 - 6
- 6 - 8
< - 8

Mouse over tiles to see detailed info. Click on tiles to see current price (NYSE)
Building Treemaps with a Greedy Algorithm

Algorithm 1 BuildTreeMap($data$)

Require: A list of n data items. For simplicity, we assume each item is a weight, but it might be a more complex object in reality.

$T \leftarrow$ a list of n trees ($T = T_1 \ldots T_n$)
Sort T from highest weight to lowest weight

while $|T| > 1$ do
 $Z_1 \leftarrow$ the last tree in T
 $Z_2 \leftarrow$ the second-to-last tree in T
 $Z \leftarrow$ Tree($weight(Z_1) + weight(Z_2)$, Z_1, Z_2)
 Replace Z_1 and Z_2 with Z in T.
 Sort T form highest weight to lowest weight

end while

return The final tree in T
From Trees to Treemaps

[Diagram of a tree structure with nodes labeled 56, 20, 26, 11, 15, 10, and 5, and corresponding treemap visualizations]
A recursive procedure for generating rectangles

leaf If the t is a leaf, then return the list containing r; and

non-leaf if t is not a leaf, then

1. split r into two smaller rectangles r_1 and r_2 along the axis given by o using weight proportional to the left and right subtrees respectively;
2. recursively find the partition of r_1 by making a recursive call on the left subtree, passing r_1 and the opposite orientation of o;
3. recursively find the partition of r_2 by making a recursive call on the right subtree, passing r_2 and the opposite orientation of o;
4. return the concatenation of these two partitions.