Lecture 10: Representing Numbers, Gray Codes
For a base b, the highest value of any digit is $b - 1$

Computer scientists often use non-decimal bases

- binary$_2$ → Storing flags in a byte: 01100101
- octal$_8$ → Unix permission bits: 0755
- hexadecimal$_{16}$ → RGB color codes: #FF751A

- Hexadecimal uses 0–9 and A–F, where $A = 10$ and $F = 16$
For a base b, the highest value of any digit is $b - 1$

Computer scientists often use non-decimal bases

- **binary**$_2$ → Storing flags in a byte: 01100101
- **octal**$_8$ → Unix permission bits: 0755
- **hexadecimal**$_{16}$ → RGB color codes: #FF751A

- Hexadecimal uses 0–9 and A–F, where $A = 10$ and $F = 16$

Question: Why might we favor these particular bases in computing?
In decimal, we can represent:

- 10 different numbers using one digit: (0–9)
- 100 different numbers with two digits: (00–99)
- 1000 different numbers with three digits: (000–999)
- 10^n unique numbers with $n \geq 1$ digits

To understand why, consider the polynomial expansion of 1993

$$(1 \times 10^3) + (9 \times 10^2) + (9 \times 10^1) + (3 \times 10^0).$$
We can do the same polynomial expansions using other powers.

22 = 10110 in binary$_2$

\[(1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)\]

23 = 10111 in binary$_2$

\[(1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)\]
Polynomial Expansions Using Powers of 2

- We can do the same polynomial expansions using other powers.
- \(22 = 10110\) in binary\(_2\)
 \[(1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) \]
- \(23 = 10111\) in binary\(_2\)
 \[(1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) \]

Insight: A number is odd if and only if the last binary bit is a 1
Converting to Binary

- Checking for even/odd values tells us the last bit of a number’s binary representation

Task: Implement the function `num_to_binary(num)`, which takes a number and returns its binary representation as a list of bits.

Hint: What happens if we divide a number by 2 using integer division?
def num_to_binary(num):

 """
 return the binary representation of num as a list of bits (i.e., the integers 0 and 1)
 """
 if num == 0:
 return [0]
 bits = []
 while num > 0:
 if num % 2 == 0:
 bits.append(0)
 else:
 bits.append(1)
 num = num // 2
 bits.reverse()
 return bits
How would we generalize this function to other bases?

Hint: for any base b, the largest value of any digit is $b - 1$
def num_to_baseb(num, b):
 """
 return the b-ary representation of num as a list of base-b integers
 """
 if num == 0:
 return [0]
 digits = []
 while num > 0:
 digits.append(num % b)
 num = num // b
 digits.reverse()
 return digits
def num_to_baseb(num, b):

 """
 return the b-ary representation of num as a list of base-b integers
 """

 if num == 0:
 return [0]

 digits = []
 while num > 0:
 digits.append(num % b)
 num = num // b
 digits.reverse()
 return digits

This function works well, but it uses the minimum number of digits possible. What if we wanted a consistent width to our numbers?
```python
def num_to_padded_base(num, b, width):
    digits = []
    while num > 0:
        digits.append(num % b)
        num = num // b
    digits.extend([0] * (width - len(digits)))
    digits.reverse()
    return digits
```

This also simplifies our code, since we don’t have to check for 0!
import sys
from math import log, ceil

n = int(sys.argv[1])
b = int(sys.argv[2])
width = ceil(log(n-1, b))
for i in range(n):
 print(num_to_padded_base(i, b, width))
import sys
from math import log, ceil

n = int(sys.argv[1])
b = int(sys.argv[2])
width = ceil(log(n−1, b))
for i in range(n):
 print(num_to_padded_base(i, b, width))

$ python3 printbinary.py 8 2
[0, 0, 0]
[0, 0, 1]
[0, 1, 0]
[0, 1, 1]
[1, 0, 0]
[1, 0, 1]
[1, 1, 0]
[1, 1, 1]