
CS134 Lecture 29:
Special Methods & Linked Lists

Announcements & Logistics
• HW 9 due Monday @ 10 pm on GLOW

• Short: 6 questions for practice on OOP concepts
• Lab 9 Boggle: two-week lab now in progress

• Part 1 auto-tester feedback will be returned today
• You can fix anything broken before turning in Part 2
• Part 2 due May 1/2 (handout posted)

• Part 2 also has a prelab!

• Asks you to draw out the Boggle game logic

Do You Have Any Questions?

Last Time
• Finished implementation of Tic Tac Toe game

• (Fun?) Application of object-oriented design and inheritance

• A little exposure to software design

• Designed to help with the Boggle lab

Today’s Plan
• Discuss special methods, their purpose and how to that call them

• Build a recursive list class

• Our own implementation of list!

• Preview of the fun world of design and implementation of data
structures

• Learn how to implement several special methods which let us utilize
built-in operators in Python for user-defined types

Python's Built-in list Class
• A class with methods

(that someone else
implemented)

• pydoc3 list

• Let’s implement our
own list class with
similar functionality

Notice the double
underscores: these are

special methods

Special Methods/Magic Methods

Special Methods
• Start and end with __ (double underscore)

• Called magic methods (or informally dunder methods)

• Often not called explicitly using dot notation and called by other means

• What special methods have we already used seen/used so far?

• __init__(self, val)
• When is it called?

• Automatically when we create an instance (object) of the class

• Can also be invoked as obj.__init__(val) (where obj is
an instance of the class)

Special Methods
• __str__(self)

• When is it called?

• When we print an instance of the class using print(obj)

• Also called whenever we call str function on it: str(obj)

• Can also be invoked as obj.__str__()

• __repr__(self)
• Also returns a string but its format is very specific (can be used to

recreate the object of the class)
• Useful for debugging
• Don't worry about any more specifics for this method for CS134

Special Methods for Operators
• We can use mathematical and logical operators such as ==/+ to compare/add

two objects of a class by defining the corresponding special method

• Example of polymorphism (using a single method or operator for different uses)

• __eq__ (self, other):

• __ne__ (self, other):

• __lt__ (self, other):

• __gt__ (self, other):

• __add__(self, other) :

• __sub__(self, other):

• __mul__(self, other):

• There are many others!

x == y

x != y

x < y

x > y

x + y

x - y

x * y

__add__: why we can
concatenate sequences
with + as well as add

ints with +

Special Method: __len__
• __len__(self)

• Called when we use the built-in function len() in Python on an
object obj of the class: len(obj)

• We can call len() function on any object whose class has the
__len__() special method implemented

• All built-in collection data types we saw (string, list, range, tuple, set,
dictionaries) have this special method implemented

• This is why we are able to call len on them

• What is an example of a built-in type that we can't call len on?

• int, float, Bool, None

Python's Built-in list Class
• A class with methods

(that someone else
implemented)

• pydoc3 list

• Let’s implement our
own list class with
similar functionality

Other sequence
specific methods:
__getitem__

Other Special Methods for Sequences
• What other sequence operators have we used in this class?

• They each have a special method that is called whenever they are used

• Get an item at an index a sequence using []: calls
__getitem__

• e.g., word_lst[2] implicitly calls word_lst.__getitem__(2)

• Set an item at an index to another val using []: calls
__setitem__

• e.g., word_lst[0] = "hello" implicitly calls
word_lst.__setitem__(0, "hello)

in Operator: __contains__
• __contains__(self, val)

• When we say if elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• If we want the in operator to work for the objects of our class, we can do so by
implementing the __contains__ special method

Building Our Own Sequence Type

How to Store a Sequence
• A sequence is just an ordered collection of values

• Can query for the 0th, 1st, 2nd item and so on..

• A sequence may be mutable or immutable

• Let's think about how we can design such a sequence

• How to store these ordered values?

• Let's look at two options

• Option 1: Just store the items contiguously in memory

• Such a sequence is called an array in computer science

• To access a item, just need to know where the array starts and the
index of item in array

• Great for static sequences!

5 11 14
0 1 2 3

0x4486937008

3

Array: Contiguous Sequence

• Option 1: Just store the items contiguously in memory

• Such a sequence is called an array in computer science

• To access a item, just need to know where the array starts and the
index of item in array

• Suppose we want to create a dynamic sequence

• Want to be able to insert: e.g. want to insert 6 between 5 and 11

Array: Contiguous Sequence

5 11 14
0 1 2 3

0x4486937008 6
3

• Option 1: Just store the items contiguously in memory

• Such a sequence is called an array in computer science

• To access a item, just need to know where the array starts and the
index of item in array

• Suppose we want to create a dynamic sequence

• Want to be able to insert: e.g. want to insert 6 between 5 and 11

• Need to move everything over by one to make space

Array: Contiguous Sequence

5 11 14
0 1 2 3

0x4486937008

4

3 6

• If our array is made up of millions of items and we need to insert a lot:

• Expensive to maintain ordering in an array

• Maybe we need a different way to store items

• All we care about is that items are in order:

• Each item has a item before it or after it in the sequence

• Knowing this is sufficient to recover the total ordering, why?

Insert Efficiently?

Linked List
• Another way to design an ordered mutable sequence:

• A nested chain of values, or a linked list

• Each value has something after it: the rest of the sequence

• Must have a last item for a finite sequence

• To signify last item it's next value should be nothing

• What is a good type to represent nothing in Python?

Our Own Class LinkedList
• Attributes:

• _value, _rest

• Recursive class:

• _rest points to another instance of the same class

• Any instance of a class that is created by using another instance of
the class is a recursive class

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Next Time: Code for Linked List

