
CS134 Lecture 28:
Tic Tac Toe 4

Announcements & Logistics
• Lab 9 Boggle: two-week lab now in progress!

• Part 1 due tonight/tomorrow 10 pm
• Will return auto-tester feedback on it on Friday
• You can fix anything broken before turning in Part 2
• Must turn in something to get Part 2 grade apply to both
• Part 2 due May 1/2 (handout will be posted soon)

• Part 2 also has a prelab!

• Asks you to draw out the Boggle game logic (similar to TTT logic we
will discuss today)

Do You Have Any Questions?

Last Time and Today
• Implemented TTTCube and TTTBoard classes

• Today: wrap up the game

• Implement TTTGame class

• Talks to each of the classes and calls
appropriate methods to implement
game logic

• TTT vs Boggle discussion

Board
TTT Board

TTTCube

Game

TTTGame Logic

Start

Wait for
mouse click

Reset
state

Get
cube

End

In
Reset

button?

In Exit
button?

In
Grid?

Y

N

N

N

Y

Y

Reset
state

Result
is a Win?

Y

N

Update
cube

display

Change
players

Empty
space?

Y

N

Result
is a draw?

Y

N

TTT Game Logic

• Let’s think about __init__:

• What do we need?
• a board, player, and maybe num_moves (to detect draws easily)

Translating our Logic to Code

• Now let’s write a method for handling a single mouse click (point)
• The game continues (waits for more clicks) if this method returns True
• If this method returns False, game ends

Translating our Logic to Code

 def do_one_click(self, point):

 # step 1: check for exit button
 if self._board.in_exit(point):
 # TODO

 # step 2: check for reset button
 elif self._board.in_reset(point):
 # TODO

 # step 3: check if click on the grid
 elif self._board.in_grid(point):
 # TODO

 # keep going!
 return True

• Let’s handle the “exit” button first (since it’s the easiest)

Translating our Logic to Code

 if self._board.in_exit(point):
 print("Exiting...")
 # game over
 return False

• Now let’s handle reset

Translating our Logic to Code

 elif self._board.in_reset(point):
 print("Reset button clicked")
 self._board.reset()
 self._board.set_string_to_upper_text("")
 self._num_moves = 0
 self._player = "X"

• Finally, let’s handle a “normal” move. Start by getting point and TTTCube

Translating our Logic to Code

 elif self._board.in_grid(point):

 # get the cube at the point the user clicked
 tcube = self._board.get_ttt_cube_at_point(point)

 elif self._board.in_grid(point):

 # get the cube at the point the user clicked
 tcube = self._board.get_ttt_cube_at_point(point)

 # make sure this square is vacant
 if tcube.get_letter() == "":
 tcube.set_letter(self._player)
 tcube.place_cube(self._board)

 # valid move, so increment num_moves
 self._num_moves += 1

 # check for win or draw
 win_flag = self._board.check_for_win(self._player)
 if win_flag:
 self._board.set_string_to_upper_text(self._player + " WINS!")
 elif self._num_moves == self._board.get_rows()
 * self._board.get_cols():
 self._board.set_string_to_upper_text("DRAW!")
 # not a win or draw, swap players
 else:
 # toggle player!
 self._player = "O" if self._player == "X" else "X"

 # keep going!
 return True

• The rest of our
code checks for a
valid move, a win, a
draw, and updates
state accordingly

• At the end, if the
move was valid, we
swap players

Translating our Logic to Code

TTT Summary
• Basic strategy

• Board: start general, don’t think about game specific details

• TTTBoard: extend generic board with TTT specific features

• Inherit everything, update attributes/methods as needed

• TTTCube isolate functionality of a single TTT cube on board

• Think about what features are necessary/helpful in other classes

• TTTGame: think through logic conceptually before writing any code

• Translate logic into code carefully, testing along the way

Class Discussion:
Boggle vs TTT Design Differences

Special Methods/Magic Methods

Special Methods
• Start and end with __ (double underscore)

• Called magic methods (or informally dunder methods)

• Often not called explicitly using dot notation and called by other means

• What special methods have we already used seen/used so far?

• __init__(self, val)
• When is it called?

• Automatically when we create an instance (object) of the class

• Can also be invoked as obj.__init__(val) (where obj is
an instance of the class)

Special Methods
• __str__(self)

• When is it called?

• When we print an instance of the class using print(obj)

• Also called whenever we call str function on it: str(obj)

• Can also be invoked as obj.__str__()

• __repr__(self)
• Also returns a string but its format is very specific (can be used to

recreate the object of the class)
• Useful for debugging
• Don't worry about any more specifics for this class

Special Methods for Operators
• We can use mathematical and logical operators such as ==/+ to compare/add

two objects of a class by defining the corresponding special method

• Example of polymorphism (using a single method or operator for different uses)

• __eq__ (self, other):

• __ne__ (self, other):

• __lt__ (self, other):

• __gt__ (self, other):

• __add__(self, other) :

• __sub__(self, other):

• __mul__(self, other):

• There are many others!

x == y

x != y

x < y

x > y

x + y

x - y

x * y

__add__: why we can
concatenate sequences
with + as well as add

ints with +

Special Method: __len__
• __len__(self)

• Called when we use the built-in function len() in Python on an
object obj of the class: len(obj)

• We can call len() function on any object whose class has the
__len__() special method implemented

• All built-in collection data types we saw (string, list, range, tuple, set,
dictionaries) have this special method implemented

• This is why we are able to call len on them

• What is an example of a built-in type that we can't call len on?

• int, float, Bool, None

Other Special Methods for Sequences
• What other sequence operators have we used in this class?

• They each have a special method that is called whenever they are used

• Get an item at an index a sequence using []: calls
__getitem__

• e.g., word_lst[2] implicitly calls word_lst.__getitem__(2)

• Set an item at an index to another val using []: calls
__setitem__

• e.g., word_lst[0] = "hello" implicitly calls
word_lst.__setitem__(0, "hello)

in Operator: __contains__
• __contains__(self, val)

• When we say if elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• If we want the in operator to work for the objects of our class, we can do so by
implementing the __contains__ special method

Iteration Special Methods
• What if we want to "iterate" over an object of our class in a for loop?

• We can achieve this by implementing appropriate special methods:

• A for loop in Python can iterate over any object whose class has the
special methods __iter__ and __next__ defined

• Such objects are called iterables

• We can make objects of our class iterable by defining these methods
appropriately

[Extra] For loop: Behind the Scenes
a simple for loop to iterate over a list
for item in num_lst:

 print(item)

• Behind the scenes, the for loop is simply a while loop in disguise,
driving iteration within a try-except statement. The above loop is
really:
try:
 it = iter(num_lst)
 while True:
 item = next(it)

 print(item)
except StopIteration:
 pass

Call the iter method on object

Access the next item if it exists, then print it

This is a way to “hide” the error

Special Methods Takeaway
• We can implement any of these functionalities that built-in types enjoy for

objects of our own class by defining the appropriate special methods

