
CS134 Lecture 15:
Sets

Announcements & Logistics
• No HW due next Monday
• Midterm reminders:

• Review: Monday 3/11 from 7-9pm

• Exam Thurs 3/14 from 6-7:30pm OR 8-9:30pm
• Both exam and review are in Bronfman Auditorium
• Exam only includes material up to this week
• Sample Exam posted!

• New Instructor Help Hours Schedule
• Wednesday 1-4, Thursday 1-4

Do You Have Any Questions?

https://glow.williams.edu/courses/3876190/files?preview=283724050

Last Time
• Describe how scope works when lists are passed as function parameters

(interaction between scope and aliasing)

• Explore two new Python types:

• tuples: immutable ordered alternative to lists

Today's Plan
• Explore another new Python type:

• sets: mutable unordered collection

• Use tuples and sets in example functions

Sets

New Unordered Data Structure: Sets
• Lists and tuples both are ordered collections

• Order here refers to numerical indices to identify item position
• Sometimes there is no inherent numerical ordering of a collection, e.g.

• Items in a grocery cart
• Collection of songs on Spotify

• For unordered collections, we care the most about:
• No duplicates
• Membership: what is in the collection, what is not

Sets: Syntax and Properties
• Sets are written as comma separated values between curly braces {}
• Elements in a set must be unique and immutable

• No mutable type allowed as an item of a set
• No duplicates in a set

nums = {42, 17, 8, 57, 23}
flowers = {"tulips", "daffodils", "asters", "daisies"}
empty_set = set() # empty set

Sets: Syntax and Properties
• Sets are written as comma separated values between curly braces {}
• Elements in a set must be unique and immutable

• No mutable type allowed as an item of a set
• No duplicates in a set

what if make a set with duplicates?
dup_set = {1, 1, 2, 2, 2, 3, 4, 5, 5, 5}

what is in dup_set?
dup_set

{1, 2, 3, 4, 5}
No duplicates!

• Sets are written as comma separated values between curly braces {}
• Elements in a set must be unique and immutable

• No mutable type allowed as an item of a set
• No duplicates in a set

TypeError Traceback (most recent call last)
Cell In[12], line 3
 1 # will this work?
----> 3 l_set = {[1, 2, 3], "hello"}

TypeError: unhashable type: 'list'

Sets: Syntax and Properties

Only immutable
items in a set

will this work?

l_set = {[1, 2, 3], "hello"}

vscode-notebook-cell:?execution_count=12&line=3
vscode-notebook-cell:?execution_count=12&line=1
vscode-notebook-cell:?execution_count=12&line=3

Sets: Properties Overview
• Sets are mutable, unordered collections of immutable objects

• Sets can change (e.g., we can add and remove items)
• Sets have no order
• Sets cannot contain mutable types

• Important: Sets can be useful way of eliminating duplicate values

print(set("aabrakadabra"))

{'a', 'k', 'r', 'b', 'd'}
Potential downside of removing

duplicates from a sequence using a set?
Loses ordering!

• Tuples, like strings, support any sequence operation that does not
involve mutation: e.g,

• len() function: returns number of elements in tuple

• [] indexing: access specific element

• +, *: tuple concatenation

• [:]: slicing to return subset of a tuple (as a new tuple)

• in and not in: check membership of an object in a tuple

• for-loops: iterate over elements in tuple (in order)

Tuples as Immutable Sequences

Sets: Properties Overview

• Sets support some familiar operators, functions and iteration patterns:

• len(): returns number of items in a set

• in and not in: check membership of an item in a set

• for-loops: iterate over items in set (in arbitrary order)

Sets are Unordered
• We cannot:

• Index into a set (no notion of “position”)
• Concatenate (+) two sets (concatenation implies ordering)
• Create a set of mutable objects:

• Such as lists, sets, and dictionaries (foreshadowing...)

>>> {[3, 2], [1, 5, 4]}
TypeError
----> 1 {[3, 2], [1, 5, 4]}

TypeError: unhashable type: 'list'

Sets: Creating New Sets
• There are two ways to create a new set:

• By placing curly brackets around elements
• By using the built-in set() function

• And only one way to create an empty set

emp_set = set()

Can't write emp_set = {} which creates a
different data type (empty dictionary)

Set Operations
• The usual operations you think of in set

theory are implemented as follows

The following always return a new set.

• s1 | s2 (Set Union)

• Returns a new set that has all elements
that are either in s1 or s2

• s1 & s2 (Set Intersection)

• Returns a new set that has all the
elements that are common to both sets.

• s1 - s2 (Set Difference)

• Returns a new set that has all the
elements of s1 that are not in s2

Sets are Mutable
• Sets are a mutable data type

• There exists "methods" to mutate sets, such
as .add(), .remove()

• Will revisit this in second half of course

• Sets have similar aliasing issues as lists

• We can also mutate sets by using +=, -=, etc. because Python
calls mutator methods when we use these operators

• s1 |= s2, s1 &= s2, s1 -= s2 are versions of |, &, - that
mutate s1 to become the result of the operation on the two sets.

Takeaways: Sets
• Sets are a new mutable unordered collection of immutable objects:

• useful for eliminating duplicates from a collection if we don't care
about losing order

• can iterate over sets in a for loop (order will be arbitrary)

• efficient way to store unordered objects when main application is
checking membership in the set

• can perform mathematical operations such as union, intersection,
difference etc

Example in Class:

Using set to implement get_candidates()

Example in Class:

Using tuples to solve Madlibs Puzzles

