
CS134 Lecture 14:
Tuples and Sets

Announcements & Logistics
• Lab 4 Part 2 due tonight/tomorrow 10pm
• No homework this week

• Focus on studying for the midterm
• Will release practice midterms instead

• Midterm reminders:

• Review: Monday 3/11 from 7-9pm (@ Bronfman
Auditorium)

• Exam Thurs 3/14 from 6-7:30pm OR 8-9:30pm (@ Bronfman)
• Exam only includes material up to the end of this week

• Up to Friday May 8's lecture/ up to HW 5 and Lab 5

Do You Have Any Questions?

Last Time: Aliasing
• Scope: variables, functions, objects have limited accessibility/visibility.

• Understanding how this works helps us make decisions about where
to define variables/functions/objects

Goal was to demystify surprising behavior :
nothing in computer science is magic!

Today's Plan
• Describe how scope works when lists are passed as function parameters

(interaction between scope and aliasing)

• Explore two new Python types:

• tuples: immutable ordered alternative to lists

• sets: mutable unordered collection (if time permits)

def my_func (lst):
 lst.append(1) # same effect as lst += [1]
 print('local lst', lst)
 return lst

lst = [3]
new_lst = my_func(lst)
print('global lst', lst)
print('new_lst', new_lst)

my_func

Review: Scope Example from Lecture 4

global frame

>>> python3 example.py ▋

def my_func (lst):
 lst.append(1) # same effect as lst += [1]
 print('local lst', lst)
 return lst

lst = [3]
new_lst = my_func(lst)
print('global lst', lst)
print('new_lst', new_lst)

my_func

lst [3]

Review: Scope Example from Lecture 4

global frame

>>> python3 example.py

def my_func (lst):
 lst.append(1) # same effect as lst += [1]
 print('local lst', lst)
 return lst

lst = [3]
new_lst = my_func(lst)
print('global lst', lst)
print('new_lst', new_lst)

my_func() frame

lstmy_func

lst [3]

new_lst

Review: Scope Example from Lecture 4

?

global frame

>>> python3 example.py

def my_func (lst):
 lst.append(1) # same effect as lst += [1]
 print('local lst', lst)
 return lst

lst = [3]
new_lst = my_func(lst)
print('global lst', lst)
print('new_lst', new_lst)

my_func() frame

lstmy_func

lst [3]

new_lst

Review: Scope Example from Lecture 4

alias

global frame

>>> python3 example.py

def my_func (lst):
 lst.append(1) # same effect as lst += [1]
 print('local lst', lst)
 return lst

lst = [3]
new_lst = my_func(lst)
print('global lst', lst)
print('new_lst', new_lst)

my_func() frame

lstmy_func

lst [3,1]

new_lst

Review: Scope Example from Lecture 4

alias

global frame

>>> python3 example.py
 local lst [3, 1]

def my_func (lst):
 lst.append(1) # same effect as lst += [1]
 print('local lst', lst)
 return lst

lst = [3]
new_lst = my_func(lst)
print('global lst', lst)
print('new_lst', new_lst)

my_func() frame

lstmy_func

lst [3,1]

new_lst

Review: Scope Example from Lecture 4

alias

global frame

>>> python3 example.py
 local lst [3, 1]

def my_func (lst):
 lst.append(1) # same effect as lst += [1]
 print('local lst', lst)
 return lst

lst = [3]
new_lst = my_func(lst)
print('global lst', lst)
print('new_lst', new_lst)

my_func() frame

lstmy_func

lst [3,1]

new_lst alias

Review: Scope Example from Lecture 4

alias

global frame

>>> python3 example.py
 local lst [3, 1]

def my_func (lst):
 lst.append(1) # same effect as lst += [1]
 print('local lst', lst)
 return lst

lst = [3]
new_lst = my_func(lst)
print('global lst', lst)
print('new_lst', new_lst)

my_func() frame

lstmy_func

lst [3,1]

new_lst alias

Review: Scope Example from Lecture 4

alias

global frame

>>> python3 example.py
 local lst [3, 1]
 global lst [3, 1]

def my_func (lst):
 lst.append(1) # same effect as lst += [1]
 print('local lst', lst)
 return lst

lst = [3]
new_lst = my_func(lst)
print('global lst', lst)
print('new_lst', new_lst)

my_func() frame

lstmy_func

lst [3,1]

new_lst alias

Review: Scope Example from Lecture 4

alias

global frame

>>> python3 example.py
 local lst [3, 1]
 global lst [3, 1]
 new_lst [3, 1]

def my_func (lst):
 lst.append(1) # same effect as lst += [1]
 print('local lst', lst)
 return lst

lst = [3]
new_lst = my_func(lst)
print('global lst', lst)
print('new_lst', new_lst)

my_func() frame

lstmy_func

lst [3,1]

new_lst alias

Review: Scope Example from Lecture 4

alias

global frame

 $ python3 example.py
 local lst [3, 1]
 global lst [3, 1]
 new_lst [3, 1]
 $ ▋

Aliasing and Scope
• When we pass a mutable object as a parameter to a function, instead

of passing a clone, it passes an alias

• Since a list is mutable, changes to the alias affect the original!
• When we pass an immutable object as a parameter to a function, we

are passing a clone the scope of which is local to the function body
• Wouldn't it be nice to have an immutable form of a list?

Tuples

string tuple
>>> names = ("Bill", "Lida", "Shikha")

int tuple
>>> primes = (2, 3, 5, 7, 11)

singleton
>>> num = (5,)

parentheses are optional
>>> values = 5, 6

empty tuple
>>> emp = ()

Tuples: An Immutable Sequence
• Tuples are an immutable (ordered) sequence of values separated

by commas and enclosed within parentheses ()

A tuple of size one is called a singleton.
Note the (funky) syntax.

• Tuples, like strings, support any sequence operation that does not
involve mutation: e.g,

• len() function: returns number of elements in tuple

• [] indexing: access specific element

• +, *: tuple concatenation

• [:]: slicing to return subset of a tuple (as a new tuple)

• in and not in: check membership of an object in a tuple

• for-loops: iterate over elements in tuple (in order)

Tuples as Immutable Sequences

Review: Sequence Operations

These operators work on strings, lists, and tuples

Operation Result

seq[i] The i'th item of seq, when starting with 0

seq[si:ee] slice of seq from si to ee

seq[si:ee:s] slice of seq from si to ee with step s

len(seq) length of seq

seq1 + seq2 The concatenation of seq1 and seq2

seq * i Concatenate the seq i (int) times

x in seq True if x is contained within seq

x not in seq False if x is contained within seq

Multiple Assignment and Unpacking
• Tuples support a simple syntax for assigning multiple values at once, and

also for "unpacking" sequence values

>>> a, b = 4, 7 # after evaluating: a == 4, b == 7

reverse the order of values in tuple

>>> b, a = a, b

tuple assignment to “unpack” list elements

>>> cb_info = ['Charlie Brown', 8, False]

>>> name, age, glasses = cb_info

• Note that the preceding line is just a more compact way of writing:

>>> name = cb_info[0]

>>> age = cb_info[1]

>>> glasses = cb_info[2]

Multiple Return from Functions
• Tuples come in handy when returning multiple values from functions

multiple return values as a tuple
def arithmetic(num1, num2):
 '''Takes two numbers and
 returns their sum and product'''
 return num1 + num2, num1 * num2

>>> arithmetic(10, 2)

(12, 20)

>>> type(arithmetic(3, 4))

<class 'tuple'>

Conversion between Sequences
• The functions tuple(), list(), and str() convert between sequences

>>> word = "Williamstown"

>>> char_lst = list(word) # string to list

>>> char_lst

['W', 'i', 'l', 'l', 'i', 'a', 'm', 's', 't', 'o', 'w', 'n']

>>> char_tuple = tuple(char_lst) # list to tuple

>>> char_tuple

('W', 'i', 'l', 'l', 'i', 'a', 'm', 's', 't', 'o', 'w', 'n')

>>> list((1, 2, 3, 4, 5)) # tuple to list

[1, 2, 3, 4, 5]

Conversion between Sequences
• The functions tuple(), list(), and str() convert between sequences

>>> str(('hello', 'world')) # tuple to string

"('hello', 'world')"

>>> num_range = range(12)

>>> list(num_range) # range to list

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

>>> str(list(num_range)) # range to list to string

'[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]'

Takeaways: Tuples
• Tuples are a new immutable sequence that:

• support all sequence operations such as indexing and slicing

• are useful for argument unpacking, multiple assignments

• are useful for handling list-like data without aliasing issues

Sets

New Unordered Data Structure: Sets
• Lists and tuples both are ordered collections

• Order here refers to numerical indices to identify item position
• Sometimes there is no inherent numerical ordering of a collection, e.g.

• Items in a grocery cart
• Collection of songs on Spotify

• For unordered collections, we care the most about:
• Membership: what is in the collection, what is not
• No duplicates

New Unordered Data Structure: Sets
• Sets are mutable, unordered collections of immutable objects

• Sets can change (e.g., we can add and remove items), but an item
cannot be changed once the item is added to the set

• Sets are written as comma separated values between curly braces { }
• Elements in a set must be unique and immutable

• Sets can be an effective way of eliminating duplicate values

>>> nums = {42, 17, 8, 57, 23}
>>> flowers = {"tulips", "daffodils", "asters", "daisies"}
>>> empty_set = set() # empty set

New Unordered Data Structure: Sets
• Question: What is the potential downside of removing duplicates w/sets?

>>> first_choice = {'a', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(first_choice)
>>> uniques
???
>>> set("aabrakadabra")
???

New Unordered Data Structure: Sets
• Question: What is the potential downside of removing duplicates w/sets?

• Might lose the ordering of elements

>>> first_choice = {'a', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(first_choice)
>>> uniques

>>> set("aabrakadabra")
{'a', 'b', 'c'}

{'a', 'b', 'd', 'k', 'r'}

Sets: Creating New Sets
• There are two ways to create a new set:

• By placing curly brackets around elements:

• By converting an iterable collection into a set:

• And only one way to create an empty set:

>>> set_func = set('aardvark')
>>> set_func
{'d', 'v', 'a', 'r', 'k'}

>>> set_brack = {'aardvark'}
>>> set_brack
{'aardvark'}

Why letters here instead
of the word?

>>> empty_set = set()
>>> empty_set
set()

Strings are iterable collection!

• Can check membership in a set using in, not in
• Can check length of a set using len()
• Can iterate over values in a loop (order will be arbitrary)

>>> nums = {42, 17, 8, 57, 23}
>>> flowers = {"tulips", "daffodils", "asters", "daisies"}
>>> 16 in nums
False
>>> "asters" in flowers
True
>>> len(flowers)
4
>>> # iterable
>>> for f in flowers:
>>> ... print(f)

Sets: Membership and Iteration

tulips
daisies
daffodils
asters

Sets are Unordered
• Therefore we cannot:

• Index into a set (no notion of “position”)
• Concatenate (+) two sets (concatenation implies ordering)
• Create a set of mutable objects:

• Such as lists, sets, and dictionaries (foreshadowing...)

>>> {[3, 2], [1, 5, 4]}
TypeError
----> 1 {[3, 2], [1, 5, 4]}

TypeError: unhashable type: 'list'

Set Operations
• The usual operations you think of in set

theory are implemented as follows

The following always return a new set.

• s1 | s2 (Set Union)

• Returns a new set that has all elements
that are either in s1 or s2

• s1 & s2 (Set Intersection)

• Returns a new set that has all the
elements that are common to both sets.

• s1 - s2 (Set Difference)

• Returns a new set that has all the
elements of s1 that are not in s2

Sets are Mutable
• Sets are a mutable data type

• There exists "methods" to mutate sets, such
as .add(), .remove()

• Will revisit this in second half of course

• Sets have similar aliasing issues as lists

• We can also mutate sets by using +=, -=, etc. because Python
calls mutator methods when we use these operators
• s1 |= s2, s1 &= s2, s1 -= s2 are versions of |, &, - that

mutate s1 to become the result of the operation on the two sets.

Takeaways: Sets
• Sets are a new mutable unordered collection of immutable objects:

• useful for eliminating duplicates from a collection if we don't care
about losing order

• can iterate over sets in a for loop (order will be arbitrary)

• efficient way to store unordered objects when main application is
checking membership in the set

• can perform mathematical operations such as union, intersection,
difference etc

