
CS134 Lecture 13:
Scope

Announcements & Logistics
• Lab 04 Feedback is out! Can you interpret TestResults.txt?
• Lab 03 Graded feedback is out
• HW 5 will due tonight @ 10pm

• Lab 4 Part 2 due Wednesday/Thursday 10pm

• Midterm reminders:

• Review: Monday 3/11 from 7-9pm

• Exam Thurs 3/14 from 6-7:30pm OR 8-9:30pm
• Both exam and review are in Bronfman Auditorium

Do You Have Any Questions?

Last Time: Aliasing
• Attempts to change immutable objects (e.g., strings) produce clones

• Changes to clones do not affect originals

• No aliasing!

• We can create aliases of mutable objects

• Aliases refer to the same object, so changes to that object through any
alias affect value that other aliases observe

• For the list data type, += is sneakily replaced by .append()
• This mutates the list!

Goal was to demystify surprising behavior :
nothing in computer science is magic!

Today's Plan
• Scope: variables, functions, objects have limited accessibility/visibility.

• Understanding how this works helps us make decisions about where
to define variables/functions/objects

Goal is to again demystify surprising behavior :
nothing in computer science is magic!

Review: Scope Example from Lecture 4
def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

What is printed here?

What is printed here?

What is returned?

def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

Global scope

my_func
Some
code

val 3

newVal

Review: Scope Example from Lecture 4

def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

Global scope

3

my_func frame

val

val = val + 1

print('local', val)

return val

my_func
Some
code

val 3

newVal eww

Review: Scope Example from Lecture 4

def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

Global scope

3

my_func frame

val

val = val + 1

4

print('val =', val)

return val 4

my_func
Some
code

val 3

newVal eww
What is printed here?

Review: Scope Example from Lecture 4

def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

Global scope

3

myfunc frame

val

val = val + 1

4

print(`val =`, val)

return val 4

my_func
Some
code

val 3

newVal 4

Information flow out of a function is only through return statements!

Function frame destroyed
(and all local variables lost)

after return from call

Review: Scope Example from Lecture 4

What gets printed to the screen?

What is printed here?

a = 3
b = 4

def square(x):
 return x * x

sum_sq = square(a) + square(b)
c = sum_sq ** 0.5

print(c)

?

Understanding Scope
a = 3
b = 4

def square(x):
 return x * x

sum_sq = square(a) + square(b)
c = sum_sq ** 0.5

print(c)

Global scope

square
Some
code

a 3

b 4

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = square(a) +
 square(b)
c = sum_sq ** 0.5

print(c)

?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = square(3) +
 square(b)
c = sum_sq ** 0.5

print(c)

?

?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = square(3) +
 square(4)
c = sum_sq ** 0.5

print(c)

?

?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = square(3) +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

x

return x * x
?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = square(3) +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

x

return 3 * 3

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = square(3) +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

x

return 9

Function frame destroyed (and
all local variables lost) after
return from function call

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = 9 +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

x

return 9

4

square frame

x

return x * x

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = 9 +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

x

return 9

4

square frame

x

return x * x
?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = 9 +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

x

return 9

4

square frame

x

return 4 * 4

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = 9 +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

x

return 9

4

square frame

x

return x * x
?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(x):
 return x * x

sum_sq = 9 +
 16
c = sum_sq ** 0.5

print(c)

3

square frame

x

return 9

4

square frame

x

return x * x
?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq 25

a = 3
b = 4

def square(x):
 return x * x

sum_sq = 25

c = sum_sq ** 0.5

print(c)

Understanding Scope

square
Some
code

a 3

b 4
sum_sq 25

a = 3
b = 4

def square(x):
 return x * x

sum_sq = 25

c = sum_sq ** 0.5

print(c)

Global scope

c -

Understanding Scope

square
Some
code

a 3

b 4
sum_sq 25

a = 3
b = 4

def square(x):
 return x * x

sum_sq = 25

c = 25 ** 0.5

print(c)

Global scope

c -

Understanding Scope

square
Some
code

a 3

b 4
sum_sq 25

a = 3
b = 4

def square(x):
 return x * x

sum_sq = 25

c = 5

print(c)

Global scope

c 5

Finally, 5 is printed

Understanding Scope

Local Parameter Names

What if we change this?
a = 3
b = 4

def square(a):
 return a * a

sum_sq = square(a) + square(b)
c = sum_sq ** 0.5

print(c)
Does it change the behavior?

Local Parameter Names

How about this change?
a = 3
b = 4

def square(a):
 return b * b

sum_sq = square(a) + square(b)
c = sum_sq ** 0.5

print(c)

Will it throw NameError?

Understanding Scope
a = 3
b = 4

def square(a):
 return b * b

sum_sq = square(a) + square(b)
c = sum_sq ** 0.5

print(c)

Global scope

square
Some
code

a 3

b 4

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = square(a) +
 square(b)
c = sum_sq ** 0.5

print(c)

?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = square(3) +
 square(b)
c = sum_sq ** 0.5

print(c)

?

?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = square(3) +
 square(4)
c = sum_sq ** 0.5

print(c)

?

?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = square(3) +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

a

return b * b
?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = square(3) +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

a

return 4 * 4

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = square(3) +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

x

return 9

Function frame destroyed (and
all local variables lost) after
return from function call

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = 16 +
 square(4)
c = sum_sq ** 0.5

print(c)

3

square frame

x

return 9

4

square frame

a

return b * b

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = 16 +
 square(4)
c = sum_sq ** 0.5

print(c) 4

square frame

a

return b * b
?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = 16 +
 square(4)
c = sum_sq ** 0.5

print(c) 4

square frame

a

return 4 * 4

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = 16 +
 square(4)
c = sum_sq ** 0.5

print(c) 4

square frame

x

return x * x
?

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq -

a = 3
b = 4

def square(a):
 return b * b

sum_sq = 16 +
 16
c = sum_sq ** 0.5

print(c)

Understanding Scope

Global scope

square
Some
code

a 3

b 4
sum_sq 32

a = 3
b = 4

def square(a):
 return b * b

sum_sq = 32

c = sum_sq ** 0.5

print(c)

Understanding Scope

square
Some
code

a 3

b 4
sum_sq 32

a = 3
b = 4

def square(a):
 return b * b

sum_sq = 32

c = sum_sq ** 0.5

print(c)

Global scope

c -

Understanding Scope

square
Some
code

a 3

b 4
sum_sq 32

a = 3
b = 4

def square(a):
 return b * b

sum_sq = 32

c = 32 ** 0.5

print(c)

Global scope

c

Understanding Scope

5.656854249492381

a = 3
b = 4

def square(a):
 return b * b

sum_sq = 32

c =5.656854249492381

print(c)

square
Some
code

a 3

b 4
sum_sq 25

Global scope

c 5

Finally, 5.656854249492381 is printed

Understanding Scope

When python encounters a new term, like a variable or function name, it
first looks locally, before looking higher up.

If it can't find the value assigned to the term, you get a NameError.

Takeaway: Local Before Global

More Examples in
Notebook

What gets printed to the screen?

??
multiplier = 3
def mystery(num):
 return multiplier * num
multiplier = 2
answer = mystery(5)
print(answer)

What gets printed to the screen?

10
multiplier = 3
def mystery(num):
 return multiplier * num
multiplier = 2
answer = mystery(5)
print(answer)

• multiplier is recorded as 3 on the Global Frame

• Then the mystery() blueprint is recorded on the Global Frame

• Then multiplier is re-assigned the value 2 on the Global Frame

• ...

list = 2468
list_str = list("whoops")
print(list, list_str)

What gets printed to the screen?

??

list = 2468
list_str = list("whoops")
print(list, list_str)

What gets printed to the screen?

TypeError:
'list'

object is
not callable

• list is a python keyword, in the Global Frame

• list = ... reassigns the value of list in the Global Frame

• It's no longer the keyword, it's now an integer object

• So you can't call list(..) as the built-in list-casting function!

• ...This is why we don't use python keywords as variable names.

Helpful Tool for Learning
How python Executes Code

• https://pythontutor.com/cp/composingprograms.html

https://pythontutor.com/cp/composingprograms.html

