
CS 134 Lecture 12:
Mutability

Announcements & Logistics
• HW 5 due Mon March 4 at 10 pm on GLOW

• Lab 4 Part 1 autograded feedback and Lab 3 feedback will be released today

• Reminder that Midterm is March 14

• Two exam slots: 6-7.30 pm, 8-9.30 pm

• Room: Bronfman auditorium

• Midterm review Monday March 11 evening 7-9 pm in Bronfman

• How to study: review lectures

• Practice past HW and labs on pencil and paper

• Additional POGIL worksheets posted on course website (resources)

Do You Have Any Questions?

Last Time
• New iteration statement: the while loop

• "Conditional" looping statement
• Useful when we don't know a sequence or stopping condition

ahead of time

Today's Plan
• Mutability and its consequences: aliasing

Mutability

• Lists are a mutable data type in Python:
• After a list is created, we can change its value

• There are many ways to mutate a list, we will only discuss two of these
• Direct assignment (e.g., lst[index] = item)
• Appending to list using .append(item) notation

Lists are Mutable

• An assignment operation on an existing index of a list changes the value
stored at that index

Direct Assignment

Syntax: my_list[index] = item

>>> my_list = ['cat', 'dog']
>>> my_list[1] = 'fish'
>>> my_list
['cat', 'fish']
>>> my_list[7] = 'oops'
IndexError: list assignment index out of range
>>>

my_list has changed!

Can only assign to existing indices

• We can mutate a list by appending an item to it
• Places the new item after the current last item, increasing length by 1

Appending Items to List

>>> my_list = ['cat', 'dog']
>>> my_list.append('fish')
>>> my_list
['cat', 'dog', 'fish']

my_list has changed!

Important:
No [] around item!

Syntax: my_list.append(item)

Notice the new dot notation: this is
a special "method" of type list

• We've often updated "accumulator lists" by "appending" items in loops
• So far we have been using += (concatenation)

• var += val normally is a shorthand for var = var + val
• But when var is a list, Python secretly calls
var.append(val)

Sneaky Appending

>>> my_list = ['cat', 'dog']
>>> my_list += ['fish']
>>> my_list
['cat', 'dog', 'fish']

Python actually replaces += with
append without telling us!

• If we instead explicitly use the .append(item) syntax, then the code
we execute is the code that we actually wrote

• This also avoids one of the recurring errors that we've been running into
in our labs! (Type mismatches with +=)

Explicit Appending

>>> my_list = ['cat', 'dog']
>>> my_list += ['fish']
>>> my_list
['cat', 'dog', 'fish']

>>> my_list = ['cat', 'dog']
>>> my_list.append('fish')
>>> my_list
['cat', 'dog', 'fish']

Brackets are needed here because we
are adding (+) a list (my_list) to

another list (['fish'])

NO brackets needed here because we are
passing the item we want to append

('fish') as an argument to the append
method (special type of function)

• We need to be careful about the the type of item we provide to append

Appending to Accumulate in a List

>>> my_list = ['apple', 'orange', 'banana']
>>> my_list.append(['peach'])
>>> my_list
['apple', 'orange', 'banana', ['peach']]

If item is a list, then the entire list is appended

Syntax: my_list.append(item)

You may use .append() instead of += in
Lab 4 because they are equivalent in Python,

but no other list/string "dot methods"

• We have discussed the following types in class:
• int, float, Boolean, string, list, range()

• Python is an object-oriented language
• Everything in Python is an object and has a type

• Each type has methods you can call on objects of that type, e.g.,
• string objects have .find(), .format(), .split(), etc

• list objects have .append(), .extend(), etc

• We have intentionally not discussed these in class so far (will do so later)
• For lists, we are introducing .append() method as this is already

being used "behind the scenes" with +=

[Aside] Objects, Types and Methods

• Other data types we have seen are immutable

• Strings, ints, floats, range() are immutable data types
• Once created, we cannot change the value of an immutable data type

Strings are Immutable

>>> my_string = 'cat'
>>> my_string[0] = 'b'

TypeError Traceback (most recent call last)
Cell In[25], line 2
 1 my_string = 'cat'
----> 2 my_string[0] = 'b'

TypeError: 'str' object does not support item assignment

Cannot change a string!

Will this let us change
my_string to 'bat'?

vscode-notebook-cell:?execution_count=25&line=2
vscode-notebook-cell:?execution_count=25&line=1
vscode-notebook-cell:?execution_count=25&line=2

• Mutability of data types can have unintended consequences

• Consider the Python code on the left (involving strings which are
immutable) vs right (involving lists which are mutable)

Mutability has Consequences!

>>> word = "hello"
>>> copy = word
>>> word = word + "world"
>>> copy
'hello'

>>> word_list = ["hello"]
>>> copy = word_list
>>> word_list.append("world")
>>> copy
['hello', 'world']

Changing word does not change copy Changing word_list also
changes copy

Aliasing:
Side-effect of Mutability

• What is the difference between a clone and an alias ?
• Clones appear the same but are actually different objects

• Alias is another name for the same object

• To define whether something is a clone or alias in Python, we need to
revisit variables and how their values are stored "under the hood"

Clone vs Alias

An identical copy Alternate name

@ew23 Ephelia

• Consider an assignment operation such as num = 5

• The variable name num is a way to refer to a unique address in
memory where the value 5 is stored

• This address is called the identity of this object

Name, Value and Identity

Identity of num: memory address
where 5 is stored (e.g., 0x4486937008)

>>> num = 5 5num

Value of num: 5

0x4486937008

Value vs Identity
• An object’s identity never changes once it has been created

• On the other hand, an object’s value may be changeable

• Objects whose values can change are called mutable

• Objects whose values cannot change are called immutable

0x4486937008

Variable names like num point to memory
addresses of stored value

Memory address

5

num

>>> num = 5

Clone and Alias in Python
• A clone of an object has the same value but different identities

• Mutating a clone does not change the original object

• An alias of an object has the same value and the same identity

• Mutating an alias also mutates the original object

Different identities (locations in memory) Same identity (same location in memory)

Clones and Aliases in Python
• Giving a new name to an existing immutable object creates a clone

• Giving a new name to an existing mutable object creates an alias

copy is a clone of word, changing
word does not change copy

copy is an alias of word_list,
changing word changes copy

>>> word = "hello"
>>> copy = word
>>> word = word + "world"
>>> copy
"hello"

>>> word_list = ["hello"]
>>> copy = word_list
>>> word_list.append("world")
>>> copy
['hello', 'world']

Strings are Immutable

copy is a clone of word

>>> word = "hello"
>>> copy = word word 'hello'

copy 'hello'

Strings are Immutable

changing word does not change copy

>>> word = "hello"
>>> copy = word
>>> word = word + "world"
>>> copy
"hello"

copy

word 'hello'

'hello'

'hello world'

Attempts to change an immutable object create a new object

Instead of mutating word, create a new object
with a different identity and value

Attempts to change an immutable object create a clone

Ints, Floats are Immutable

>>> num = 5
>>> num = num + 1

id: 0x4486937008

5

num 6
id: 0x4486937040

Trying to change the value of num creates
a new object with a different identity

List Aliasing
• Any assignment or operation that creates a new name for an existing

mutable object implicitly creates an alias

word_list copy

Since a list is mutable, we are not creating a clone, but rather an alias

['hello']

>>> word_list = ["hello"]
>>> copy = word_list

List Aliasing
• Any assignment or operation that creates a new name for an existing

mutable object implicitly creates an alias

word_list copy

['hello', 'world']

>>> word_list = ["hello"]
>>> copy = word_list
>>> word_list.append("world")
>>> copy
['hello', 'world']

Changing word_list changes copy

0x4486937008

Summary: Mutability in Python

• Once you create them, their value cannot be changed
• Referring to these objects by a new variable name creates a clone

• All expressions that manipulate these objects yield a new object. They
do not modify the original object

• List values can be changed
• Can mutate a list (using direct assignment or .append())

• Attempts to refer to a list by a new variable name creates an alias

Lists are Mutable

Strings, Ints, Floats are Immutable

How to Avoid
Aliasing Side-effects

• Aliases are never created for immutable data types

• We can safely make clones and not worry about accidentally
modifying the original

• Thus any operation on strings, ints, or floats is safe from aliasing

• Sequence operations such as slicing ([start:end]) and
concatenation (+) always create new strings as it is impossible
to mutate strings

• We will see an immutable alternative to lists next week

• tuple (an immutable sequence)

Using Immutable Types

• When using lists, we can avoid aliasing by being careful

• An assignment of a literal value (i.e., an expression with no variables)
to a variable creates a new object

• An assignment of a new list (i.e., an expression enclosed with []) to a
variable creates a new object

• var = [item] always creates a new list

my_lst [1, 2, 3]

Avoiding Aliasing with Lists

>>> list1 = [1, 2, 3]
>>> list2 = list1
>>> my_lst = [1, 2, 3]

list1 list2

[1, 2, 3]

• We can force Python to create a clone of a list instead of an alias by
using sequence operations

• Sequence operations such as slicing [:] and concatenation (+) on
lists create new lists

• They do not create an alias or mutate the original list

nums

[42, 11]

Sequence Operations on Lists

>>> nums = [42, 11]

• We can force Python to create a clone of a list instead of an alias by
using sequence operations

• Sequence operations such as slicing [:] and concatenation (+) on
lists create new lists

• They do not create an alias or mutate the original list

nums

[42, 11]
>>> nums = [42, 11]
>>> nums = nums + [3]

[42, 11, 3]

Sequence Operations on Lists

>>> nums = [42, 11]
>>> name = name[1:4]

nums

[42, 11]

Sequence Operations on Lists
• We can force Python to create a clone of a list instead of an alias by

using sequence operations
• Sequence operations such as slicing [:] and concatenation (+) on

lists create new lists
• They do not create an alias or mutate the original list

• We can force Python to create a clone of a list instead of an alias by
using sequence operations

• Sequence operations such as slicing [:] and concatenation (+) on
lists create new lists

• They do not create an alias or mutate the original list

new

[42, 11]
>>> nums = [42, 11]
>>> new = nums[:]
>>> name = name[1:4]

[42, 11]

Sequence Operations on Lists

nums

new is a clone but not an alias!

• We can force Python to create a clone of a list instead of an alias by
using sequence operations

• Sequence operations such as slicing [:] and concatenation (+) on
lists create new lists

• They do not create an alias or mutate the original list

new

[42, 11]
>>> nums = [42, 11]
>>> new = nums[:]
>>> new.append(3)
>>> name = name[1:4]

[42, 11, 3]

Sequence Operations on Lists

nums

new is a clone but not an alias!

Takeaways
• We cannot change the value of immutable objects such as strings

• Attempts to copy or to modify them creates a new object

• No need to worry about aliasing side effects

• We can change the value of mutable objects such as lists

• When using the += operator with lists mutates the list!

• Python secretly calls .append()

• Need to be mindful of aliasing; be careful to avoid unintended aliases

• You can create a "true clone" of a list using slicing or by creating a new
list containing the same items (e.g., using a loop or list comprehension)

Advanced:
Aliasing in Nested Lists

• Nested lists create more complicated aliasing side effects

• An assignment to a new variable creates a new list

[]

Nested Lists: Aliasing Nightmare

>>> list1 = [1, 2, 3]
>>> list2 = [list1]

list1
list2

[1, 2, 3]

>>> nums = [23, 19]
>>> words = ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

>>> words += ["sky"]
>>> mixed

(Crazy) Aliasing Examples

???

[23, 19]

nums

words

['hello', 'world']

[12, , 'nice',]

mixed

(Crazy) Aliasing Examples
>>> nums = [23, 19]
>>> words = ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

[23, 19]

nums

['hello', 'world', 'sky']

[12, , 'nice',]

mixed

(Crazy) Aliasing Examples

words

>>> words += ["sky"]

