CS |34 Lecture | 1:
While Loops

Announcements & Logistics

HW 5 will be released today on GLOW
Lab 4 Part | due Wed/Thurs 10 pm

We will return feedback (including tests not found in runtests.py)

Reminder that Midterm 1s Thursday March 14
Two exam slots: 6-7.30 pm, 8-9.30 pm
Room: Bronfman audritorium
Midterm review Monday March | | evening /-9 pm in Bronfman Auditorium
How to study: review lectures
Practice past HW and labs (using pencil and paper)

Additional POGIL worksheets posted on course website (resources)

Do You Have Any Questions?

http://cs.williams.edu/~cs134/pogils/pogils.html
http://cs.williams.edu/~cs134/resources.html

L ast [Ime

Wrapped up examples of nested for loops and nested lists

Discussed the difference between importing functions vs running
python code as a script

Role of special variable __name__
Introduced list comprehensions
Short-hand expressions for common looping patterns

"Pythonic feature”: anything we can do with list comprehensions,
we can do with standard looping patterns

Jloday's Plan

New Iteration statement: the loop

Discuss the mutabllity of different data types and the implications

When you don't know when to stop
(ahead of time):

While Loop

Story so far: for loops

- for loops in Python are meant to iterate directly over a fixed sequence
- No need to know the sequence's length ahead of time

» Interpretation of for loops in Python:

for each item in given sequence:

(do something with item)

» Other programming languages (like Java) have for loops that require you
to explicitly specify the length of the sequence or a stopping condition

- Thus Python for loops are sometimes called “for each’ loops

- Takeaway: For loops in Python are meant to iterate directly over each
item of a given iterable object (such as a sequence)

What It We Don't Know When to Stop!?

- Stopping condition of for loop: no more elements in sequence

[llAll, "Ch-i_-l_-l_y", "autumn", lldayH]

1

1tem

- What if we don't know when to stop!

* Suppose you had to write a program to ask a user to enter a
name, repeatedly, until the user enters “quit”, iIn which case you
stop asking for input and print “Goodbye”

How many times should the loop execute!

Under what condition should the loop end?

while loop

- while loops keep iterating until a continuation condrtion holds
- Syntax:
Repeat loop body as long as this evaluates to True

while boolean_expression:

<loop body>
<loop body>

Indentation defines the loop body

while True: while False:
print("never leaves") print("never enters")

“Infinite” loop! Loop body never executes

While Loop Example

- Example of a while loop that depends on user input

prompt = "Please enter a name (type quit to exit): "
name = input(prompt)
Stopping condition
while (name != "quit"):
print("Hi,", name)
name = input(prompt)

print("Goodbye")

While Loop to Print Halves

-+ Given a number; print all the positive “halves”: keep dividing n by two
and printing the quotient until it becomes smaller than O

def print_halves(n):
while n > 0:

print(n) 100
n n//2 >0
25
rint_halves(100) 12
print_ _> ;
3
1

While Loo

b to Print Halves

-+ Given a number; print all the positive “halves”: keep dividing n by two
and printing the quotient until it becomes smaller than O

def print_halves(n):
while n > 0:
print(n)
n n//2

print_halves(l@@)_’

100
50
25
12

def print_halves(n):
while n > 0:
print(n)

n n//2

prin:_halves(100)

What about this loop?

While Loo

b to Print Halves

-+ Given a number; print all the positive “halves”: keep dividing n by two
and printing the quotient until it becomes smaller than O

def print_halves(n):
while n > 0:
print(n)
n n//2

print_halves(l@@)_’

100
50
25
12

def print_halves(n):
while n > 0:
print(n)
n n//2

prin:_halves(100)

Infinite loop! Indentation matters!

while and 1T side by side

if boolean_expresion: while boolean_expresion:

statement 1 # statement 1
statement 2 # statement 2
end of if # end of while

Keep executing this while the
boolean expression (continues) to
evaluate to true

Execute this once if the boolean
expression evaluates to true

Side by Side: for and while loops

for i in range(5):
print('$" % 1)

All these steps are implicit in a Python
for loop: 1 takes on values O, I,2, 3,4

Explicitly initialize variable

Test stopping condition

i=20

while 1 < 5:
print('$" % 1)
1 +=1

Update value of variable
used In test condition

Common while loops steps:

Initialize a variable used in the test condrition
Test condition that causes the loop to end when False
Within the loop body, update the variable used in the test condition

Side by Side: for and while loops

vowels = 'aeilou'

No need to find len or to
index using []

for char i1n vowels:
print(char)

terate directly over
elements of sequence

Explicitly initialize variable

Test stopping condition
1 =20
while i < len(vowels):
print(vowels[i])

1 += 1

Update value of variable
used In test condrtion

Common while loops steps:

Initialize a variable used in the test condrition
Test condition that causes the loop to end when False
Within the loop body, update the variable used in the test condition

Breaking out of loops

- Stopping condition of for loop: no more elements in sequence
- What If we want to stop (break out) early: how did we handle this!
- Let's recap one such example: index_of(elem, 1)

+ Write a function index_of(elem, 1) thattakestwo
arguments (e lem of any type and list 1) and returns the first
index of elem if elemis in the list L otherwise returns =1

>>> index_of('blue', ['red', 'blue', 'blue'])
1

>>> index_of (14, [23, 1, 10, 11, 14])

4

>>> index of('a', ['b', 'c', 'd', 'e'l)

-1

Side by Side: 1ndex_of

def index of(elem, 1):

for i in range(len(1)):

match?

if U[i] == elem:
stop loop!
return 1

1if not found
return -1

def index of(elem, 1):
found = False # flag
index_of_elem = -1

1 =20

while not found and i < len(1l):

match?

if elem == 1[i]:
stop the loop!
found = True

index_of _elem = 1
keep going
1 +=1

return i1ndex_of_elem

[akeaways

» New iteration statement: while loop as an alternative to for loops are
meant to Iterate for a fixed number of times

+ Used when the stopping condition is determined "on the fly"

» Keeps iterating as long as Boolean condition evaluates to True

