
CS 134 Lecture 3:
Functions

Check-in After First Lab!
• You have all survived your first computer science lab

• Congratulations!
• Computer science tools that you used:

• VS Code as a text editor for code
• Terminal as a text-based interface to the computer
• Git for retrieving & submitting your work
• Python, of course!

Do You Have Any Questions?

Overview of Git/Unix:
https://www.cs.williams.edu/~cs134/docs/git.pdf

https://www.cs.williams.edu/~cs134/docs/git.pdf

Aside: Submitting Labs via Git
• Git is a version control system that lets you manage and keep track of

your source code history
• Key commands

• git clone - every time you start a new lab OR move to a new
machines, use git clone to download the latest copy of your code from
our server

• git add <files> - mark <files> to be uploaded to server on next push

• git commit -m “message” - create a checkpoint, used after git add

• git commit -am “message” - combines add and commit into one
step; only use for files that have been previously added!

• git push - send files that were added/committed to server

• git pull - get latest code from server (after you have cloned)

Aside: Useful Unix Commands
• pwd - print working directory
• mkdir <dir name> - make new directory (or folder)
• cd <dir name> - change directory
• Special directory names

 . (single dot, current directory)

 .. (two dots, parent directory)

 ~ (tilde, home directory)
• cd .. takes you to the parent directory
• cd takes you “home”
• ls shows contents of current directory

Announcements & Logistics
• Lab 1

• Due today at 10 pm (for Mon labs), tomorrow at 10 pm (for Tues labs)

• How to submit: make sure your work is up-to-date on evolene.cs.williams.edu

• HW 2 will be released today, due next Monday at 10 pm

• Open book/notes/computer, no time limit

• Personal machine setup (Mac/Windows): Step-by-step guide available

• Lots of helps hours if you have questions!

• Today noon-4 pm, 4-6 pm and 7-10 pm (in TCL 216)

• Tomorrow 1-4 pm, 4-6 pm and 7-10 pm (in TCL 216)

Do You Have Any Questions?

Can work in TCL 216/217A anytime
there is no scheduled class

Last Time
• Discussed data types and variables in Python

• int, float, boolean, string
• Learned about basic operators

• arithmetic, assignment
• Experimented with built-in Python functions

• input(), print(), int()
• Discussed different ways to run and interact with Python

• Create a file using an editor (VS Code), run as a script from Terminal
• Interactively execute Python from Terminal

Today’s Plan
• Discuss functions in greater detail
• Review the built-in functions we (briefly) saw last time and in lab

• input(), print(), int() all expect argument(s) within the parens
• We will examine these a bit more today

• Learn how to define our own functions

Jupyter Notebook
• Last class we did examples in interactive python
• Upsides: low overhead, easy to use
• Downsides:

• No record of what we did
• Can't pre-type examples to run in class
• Harder to view and manage

• From now, we will instead use Jupyter Notebook for lecture examples
• All examples will be posted on the website
• Just an enhanced way to use interactive python
• Installed on all lab machines & part of personal machine setup
• Anything we do in Jupyter notebook can be done in Interactive Python!

Review:
Python Built-in Functions

input(), print()

int(), float(), str()

Built-in functions: input()
• input() displays its single argument as a prompt on the screen and

waits for the user to input text, followed by Enter/Return
• It interprets the entered value as a string (a sequence of characters)

>>> input('Enter your name: ')
Enter your name: Charlie Brown
'Charlie Brown'
>>> age = input('Enter your age: ')
Enter your age: 8
>>> age
'8'

Prompts in Maroon. User input in blue.
Inputted values are by default a string

Built-in functions: print()
• print() displays a character-based representation of its argument(s)

on the screen/Terminal.

>>> name = 'Peppermint Patty'
>>> print('Your name is', name)
Your name is Peppermint Patty
>>> age = input('Enter your age : ')
Enter your age: 7
>>> print('The age of ' + name + ' is ' + age)
The age of Peppermint Patty is 7

Comma as a separator adds a space

Can also add spaces through string
concatenation

Built-in functions: int()
• When given a string that’s a sequence of digits, optionally preceded by

+/-, int() returns the corresponding integer
• On any other string it raises a ValueError
• When given a float, int() returns the integer that results after

truncating it towards zero
• When given an integer, int() returns that same integer

>>> int('42')
42
>>> int('-5')
-5
>>> int('3.141')
ValueError

Built-in functions: float()
• When given a string that’s a sequence of digits, optionally preceded by

+/-, and optionally including one decimal point, float() returns the
corresponding floating point number.

• On any other string it raises a ValueError
• When given an integer, float() converts it to a floating point number.
• When given a floating point number, float returns that number

>>> float('3.141')
3.141
>>> float('-273.15')
-273.15
>>> float('3.1.4')
ValueError

Built-in functions: str()
• Converts a given type to a string and returns it
• Returns a syntax error when given invalid input

>>> str(3.141)
'3.141'
>>> str(None)
'None'
>>> str(134)
'134'
>>> str($)
SyntaxError: invalid syntax

Today:
User-Defined Functions

Organizing Code with Functions
• So far we have:

• Written simple expressions in Python
• Created small scripts to perform certain tasks

• This is fine for small computations!
• Need more organization and structure for larger problems

• Structured code is good for :
• Keeping track of which part of our code is doing what actions
• Keeping track of what information needs to supplied where
• Reusability! Specifically, reusing blocks of code

Abstracting with Functions
• Abstraction: Reduce code complexity by ignoring (or hiding) some

implementations details

• Allows us to achieve code decomposition and reuse

• Real life example: a video projector

• We know how to switch it on and off (public interface)

• We know how to connect it to our computer (input/output)

• We don’t know how it works internally (information hiding)

• Key idea: We don’t need to know much about the internals of a
projector to be able to use it

• Same is true with functions!

Decomposition
• Divide individual tasks in our code into separate functions

• Functions are self-contained and reusable

• Each function is a small piece of a larger task

• Keep code organized and coherent

• We have already seen some built-in examples (int(), input(),
print(), etc)

• Now we will learn how to decompose our Python code and hide small
details using user-defined functions

• Later we will learn a new abstraction which achieves a greater level of
decomposition and code hiding: classes

Anatomy of a Function
• Function definition characteristics:

• A header consisting of:

• name of the function

• parameters (optional)

• docstring (optional, but strongly recommended)

• A body (indented and required)

• Always returns something (with or without an explicit return statement)

• Statements within the body of a function are not run in a program until they
are “called” or “invoked” through a function call (like calling print() or int() in
your program)

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

>>> square(5)

25

>>> square(-2)

4

Function’s name is square

Notice the indentation. This is very
important!

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

>>> square(5)

25

>>> square(-2)

4

square has one parameter, x, which is
the expected input to the function.

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

>>> square(5)

25

>>> square(-2)

4

This is the docstring, which is enclosed in triple
quotes. It is a short description of the function.

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

>>> square(5)

25

>>> square(-2)

4

All of this is the function’s header

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

>>> square(5)

25

>>> square(-2)

4

Notice the indentation. This is
very important!!

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

>>> square(5)

25

>>> square(-2)

4

This is the body of the function. Notice
the use of an explicit return statement.

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

>>> square(5)

25

>>> square(-2)

4

When we call/invoke the function,
5 is the argument value.

Function is evaluated using x=5.

Function Example
Function definition

def square(x):

 '''Takes a number and returns its square'''

 return x*x

Function Calls/Invocations

>>> square(5)

25

>>> square(-2)

4

Summary:
• Indent in function body (required)
• Colon after function name (required)
• Docstring (recommended, good style)
• x in function definition is a parameter
• Single line body which returns the result

of the expression x * x
• return always ends execution!
• Function is defined once and can be

called any number of times!

A Closer Look At Parameters
• Parameters are “holes” in the body of a function that will be filled in

with argument values in each invocation

• A particular name for a parameter is irrelevant, as long as we use it
consistently in the body (just like f(x) and f(y) in math)

• All of the square function definitions work exactly the same way!

• Invocation would also look exactly the same: square(5)

def square(x):

return x*x

def square(num):

return num*num

def square(apple):

return apple*apple

Rule of thumb: Choose parameter names that make sense. Avoid always using x, for example.

Python Function Call Model
Function frame: Model for understanding how a function call works

square (2+3) square (5)

5

square frame

x=

return x * x

5

square frame

x=

return 5 * 5

5

square frame

x=

return 25

25

Return value replaces the function call!def square(x):
return x*x

`

Function Call Replaced by Return Value

17 + square (2+3)

17 + square (5)

17 + 25

42

Print() vs Functions that Return Values
• Notice that the print() function does not return any value:

• No Out[] cell when we print in Jupyter

• In contrast to print():

• input() function returns the value inputted by user as a str

• int() function returns the given value as type int

• type() function returns the type of given value, etc

• Functions that do not explicitly return a value, implicitly return None

Value vs. None Returning Functions
We call functions that return a None value None-returning functions.
Such functions are invoked to perform an action (e.g., print something,
change state). They do not compute and return a result.

We call functions that return a value other than None value returning
functions.

def square(x):

return x*x

Value Returning

def printHW():

print('Hello World')

None-Returning

What if I run print(printHW) or print(print((printHW))?

Return Statements
• return only has meaning inside of a function definition

• A function definition may have multiple returns, but only the first one
encountered is executed!

• Any code that exists after a return statement is unreachable and will
not be executed

• The value returned by the function’s return statement replaces the
function call in a computation

• Functions without an explicit return statement implicitly return None

Next Time: Making Change
• Suppose you are a cashier and you need to make change for a given

number of cents using only quarters, dimes, nickels, and pennies

• Most cashiers use the following greedy strategy to make change using
the fewest number of coins:

• Use as many quarters as possible first, then as many dimes as
possible next, and so on, using the fewest number of pennies last

• Assume you have an unlimited supply of each coin

Exercise: Making Change
• Problem. Let us write a function makeChange(cents) that takes

as a parameter an integer cents and returns the fewest number of
coins needed to make change for cents cents

• Approach: decompose the problem into smaller pieces

• What is the maximum number of quarters we can use?

• q = cents // 25
• How much money is left if we use q quarters?

• cents = cents % 25
• For the remaining cents, what is the maximum number of dimes can

we use?

