
CSCI 134 Lecture 2:  
Python Types and Expressions

Announcements & Logistics
• HW 1 due today at 10 pm (Google form)

• Lab 1 today/tomorrow, due Wed/Thur at 10pm
• Gain experience with the workflow and tools

• Start with some short and sweet Python programs

• Important: Login to Lab machines using OIT credentials

• clone/pull/push to evolene.cs.williams.edu with CS credentials

• You must have received an email about CS account info!

• Student help hours and TA hours have started

• Check calendar on course webpage

• Questions?

http://evolene.cs.williams.edu

Last Time

• Discussed course logistics

• Reviewed syllabus

• Important take-aways:

• cs134 course website: place where everything is hosted

• Encouraged to use lab machines but resources to setup your personal

machines are available on the website

• Reach out to us or TAs if you get stuck

http://cs.williams.edu/~cs134

Today’s Plan
• Learn lots of new vocabulary words!

• Discuss data types and variables in Python

• int, float, boolean, string

• Learn about basic operators

• arithmetic, assignment

• Experiment with built-in Python functions and expressions

• int(), input(), print()

• Investigate different ways to run and interact with Python

Aspects of Languages
• Primitive constructs

• English:

• words, punctuation

• Programming languages:

• numbers, strings, simple operators

Slide adapted from https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

Aspects of Languages
• Syntax

• English:

• “boy dog cat” (incorrect), “boy hugs cat” (correct)

• “Let’s eat grandma!” (probably incorrect), “Let’s eat, grandma!” (correct)

• Programming language:

• “hi”5 (incorrect), 4*5 (correct)

Slide adapted from https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

Aspects of Languages
• Semantics is the meaning associated with a syntactically correct string

of symbols
• English:

• Can have many meanings (ambiguous), e.g.

• “Flying planes can be dangerous”

• Other examples?

• Programming languages:

• Must be unambiguous

• Can only have one meaning

• Actual behavior is not always the intended behavior!

Slide adapted from https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

Python3
• Programming language used in this course

• Great introductory language

• Better human readability and user friendly syntax than other PLs

• For this class, we need Python 3.10
• Checking version of Python on machine

• Type python3 --version in Terminal (VS Code Terminal for
Windows)

• Preinstalled on all lab machines

• Installing Python3 on your machine: see setup guide

Python Interfaces
• You can run Python code in two ways:

• As a script

• Save code in a file, run from Terminal

• Interactively (from Terminal)

• Interactive session

Python: Program as a Script
• A program is a sequence of definitions and commands

• Definitions are evaluated

• Commands are executed and instruct the interpreter to do something

• Type instructions in a file that is read and evaluated sequentially

• e.g., last lecture we wrote helloworld.py in a file and then
executed it from the Terminal with  
python3 helloworld.py

• Standard method: good for longer pieces of code or programs

• We will use this method in our labs

• Called "running the Python program as a script”

Python: Interactive
• Running Python interactively is great for introductory programming

• Launch the Python interpreter by typing python3 in the Terminal

• Opens up Interactive Python

• Almost like a "calculator" for Python commands

• Takes a Python expression as input and spits out the results of
the expression as output

• Great for trying out short pieces of code

Python Primitive Types
• Every data value has a data type. For example:

• 10 is an integer (type: int)

• 3.145 is a decimal number (type: float)

• ‘Williams’ or “Williams” is a sequence of characters (type: string)

Knowing the type of a value allows us to choose
the right operator for expressions.

Python Primitive Types
• Every data value has a data type. For example:

• 10 is an integer (type: int)

• 3.145 is a decimal number (type: float)

• ‘Williams’ or “Williams” is a sequence of characters (type: string)

• 0 (False) and 1 (True) (type: boolean or bool)

• Represent answers to decision questions (yes/no)

• Empty value (type: None)

• We will revisit booleans and None types soon!

Knowing the type of a value allows us to choose
the right operator for expressions.

>>> examples

Python Operators
• Arithmetic operators:

• + (addition), - (subtraction), * (multiplication)

• / (floating point division, returns a value with a decimal point)

• // (integer division, returns an integer)

• % (modulo, or remainder)

• ** (power, or exponent)

• Assignment operator:

• = (“is assigned or gets”, not “equals”)

• Used to “assign” values to variables

• Note. Not to be confused with mathematical equality, which is
written as == in programming languages

Variables & Assignment

Variables and Assignments

Math vs Programming. An assignment: expression on the right
evaluated first and the value is stored in the variable name on the left

• A variable names a value that we want to use later in a program

• If we define num = 17 then the value 17 essentially gets

stored in a slot in memory with the label num
• We are assigning num (a variable) the value 17

• Once defined, we can reuse variable names again, and later
assignments can change the value in a variable box

• num = num - 5

• What is stored in num after this evaluates?

num
17

Variables and Assignments
• A variable names a value that we want to use later in a program

• If we define num = 17 then the value 17 essentially gets
stored in a slot in memory with the label num

• We are assigning num (a variable) the value 17

• Once defined, we can reuse variable names again, and later

assignments can change the value in a variable box

• num = num - 5

• What is stored in num after this evaluates?

• var = <expression> (result of expression gets stored in the

variable box var)

• Question. Why would we want to name values or expressions?

num
17 12

num
17

 pi = 3.1415926 # useful to name

 radius = 2.2

 area = pi * (radius**2)

 # suppose now we want to change radius

 radius = 2.2 + 1

 area = pi * (radius**2) # new area

Abstracting Expressions
• Why give names to data values or the results of expressions?

• To reuse names instead of values

• Easier to change code later

• For example: 

Python Built-In Functions

Built-In Functions
• Python comes with a ton of built-in capabilities in the form of

functions

• We will discuss the following built-in functions today

• input(), print()

• int(), float(), str()

• Will formally discuss functions on Friday

Built-in functions: input()
• input() displays its single argument as a prompt on the screen and

waits for the user to input text, followed by Enter/Return
• Important: interprets the entered value as a string

>>> input('Enter your name: ')

Enter your name: Charlie Brown

'Charlie Brown'

>>> age = input('Enter your age: ')

Enter your age: 8

>>> age

'8'

Prompts in Maroon. User input in blue.

Inputted values are by default a string

Built-in functions: print()
• print() displays a character-based representation of its argument(s)

on the screen/Terminal.

>>> name = 'Peppermint Patty'

>>> print('Your name is', name)

Your name is Peppermint Patty

>>> age = input('Enter your age : ')

Enter your age: 7

>>> print('The age of ' + name + ' is ' + age)

The age of Peppermint Patty is 7

Comma as a separator adds a space

Can also add spaces through string
concatenation

Built-in functions: int()
• When given a string that’s a sequence of digits, optionally preceded by

+/-, int() returns the corresponding integer

• On any other string it raises a ValueError
• When given a float, int() returns the integer that results after

truncating it towards zero

• When given an integer, int() returns that same integer

>>> int('42')

42

>>> int('-5')

-5

>>> int('3.141')

ValueError

Built-in functions: float()
• When given a string that’s a sequence of digits, optionally preceded by

+/-, and optionally including one decimal point, float() returns the
corresponding floating point number.

• On any other string it raises a ValueError
• When given an integer, float() converts it to a floating point number.

• When given a floating point number, float returns that number

>>> float('3.141')

3.141

>>> float('-273.15')

-273.15

>>> float('3.1.4')

ValueError

Built-in functions: str()
• Converts a given type to a string and returns it

• Returns a syntax error when given invalid input

>>> str(3.141)

'3.141'

>>> str(None)

'None'

>>> str(134)

'134'

>>> str($)

SyntaxError: invalid syntax

[Aside] Comments and Indenting
• Anything after # in Python is a comment

• Ignored by the interpreter

• Meant for humans reading the code

• Useful for readability for large pieces of code

• Python is sensitive to indentation

• Signify start of new "code block"

• We will see how to use indents more in the coming lecture

>>> examples

Understanding Git
• Git is a version control system that lets you manage and keep track of

your source code history

• GitHub is a cloud-based git repository management & hosting service

• Collaboration: Lets you share your code with others, giving them
power to make revisions or edits

• GitLab (on evolene.cs.williams.edu) is similar to GitHub
but maintained internally at Williams

• All your lab files "live" on the CS server

• Cloning it creates a local copy that you can work on

• commit/push lets you send updates to the local files to the server

•

Git Commands
• clone

• creates a local copy of the repository on the server

• status

• gives you the git status of all works in current directory

• add

• "stages" the changes in a local file to be sent to the server

• commit

• commits the "added" changes

• push

• pushes the committed changes to the server

An Aside: Directories in Unix
• 'Folders' on your computers are called 'directories' in Unix-based

operating systems

• Your ‘current directory’ is important when executing commands on the
Terminal

• For example, programs that run as a script, such as
helloworld.py, must be in the same directory as where you
execute the command python3 helloworld.py

• Otherwise your computer doesn’t know which program to run

• Similarly, when you git pull, you need to be in the correct directory

• Useful to learn how to navigate between directories with the Terminal

Useful Unix Commands
• pwd print working directory

• mkdir <dir name> make new directory (or folder)

• cd <dir name> change directory

• Special directory names  

 . (single dot, current directory)

 .. (two dots, parent directory)

 ~ (tilde, home directory)

• cd .. takes you to the parent directory

• cd takes you “home”

• ls shows contents of current directory

