
Computer Science 134 git Workflows

For use in Fall 2018

This draft document describes the basic git-based workow we will use in Computer Science 134. It is

meant to be a reference describing typical tasks we would expect in this course.

Basic Utilities

This course makes use of three basic systems:

� Python, version 3.

� git.

� Emacs, or an equivalent editor.

You must have each of these in order to support the workows you should expect in this course.

Accounts and the CS git Server

Everyone has an account on our CS servers. Typically, the account name is your OIT `unix' account

name, prepended with your class year. You have been given a random password. Please make sure you

change this to something you can remember. In this document, I'll represent this account with 22jjc9,

the �ctional account of Joe Cool.

We have several servers that support di�erent types of services. For our use, davey is a server that

holds the �les we'll be using for this class. The full name of this server is davey.cs.williams.edu. It is

visible anywhere inside the college.

Overview of git.

git is a exible system for sharing data (�les, handouts, code, etc.). These data are organized in 'reposi-

tories'. When you want to make use of a repository for the �rst time in a new environment (your laptop,

an individual CS or OIT machine), you must 'clone' it. The clone command generally looks like this:

git clone ssh://22jjc9@davey.cs.williams.edu/~cs134/remote.git local

You will have to provide your CS password to verify your identity. It makes a full copy of the remote git

repository in a subdirectory called local. Once you have cloned the repository, you need never clone it

in this environment again. Some repositories are shared among all class members; others are private and

are shared only between you and the CS134 sta�.

When you start a work session, you typically want to make sure you update your local repository with

changes that might have occurred while you were away. This is called pulling the repository. A typical

pull operation looks like:

git pull

You'll have to provide a password.

While you work, you'll modify and create �les. Occasionally, you'll feel the project has made some

progress. You'll want to add and commit any �les that you have changed. If, for example, you've made

modi�cations to election.py and README, you'll probably use commands like

git add election.py

git add README

git commit -m ’Added vote total calculations.’



These changes are entered permanently into the repository, and the message you speci�ed (with -m) is

added to the log �le. You can see that log �le with

git log

None of these commands requires a password because they're operations on the local repository.

To see what �les are currently included in your commits, you can use

git status

which shows the state of all the important �les in your directory structure. If you have an important �le

that is not being tracked by git, you should consider adding and committing the �le.

As you make changes locally, your repository holds work not stored in the global repository. Whenever

you are done working, you should perform a commit (as above), and then push your new work up to the

server's version of the repository. This is accomplished with a command like

git push

This causes all the commits (changes) in your local repository to be applied to the global repository.

It is important to remember that all the di�erent versions of your data that you've ever committed are

remembered. If you think you made a mistake, you can always checkout an older version (not described

here). The only way, however, that you can keep track of these older versions is if you

1. pull at the beginning of a work session,

2. add and commit often, and

3. push at the end of the work session.

When you push changes up to the server those changes will be transferred to other environments you may

use when you perform a pull in those locations.

The CS134 Shared Repository.

We maintain a read-only shared repository for this class. It allows lecture materials to shared quickly

and accurately. You'll �nd lecture notes, lab handouts, examples, and documents like this in the shared

repository . The remote repository is cloned with:

git clone ssh://22jjc9@davey.cs.williams.edu/~cs134/shared.git ~/cs134/shared

This makes a new copy of the shared resources in a subdirectory of the current directory, called shared.

You should occasionally do a

git pull

when you're sitting in the shared directory. This will bring your local copy of shared �les up-to-date. It is

unwise to make changes to �les in this directory since git will become concerned that these changes might

need to be shared. To avoid this possibility, it's not possible to push the local version of the repository.

Establishing Your git Identity.

As you commit to repository changes, git tags all your changes with your identity. It is helpful if you

establish your identity the �rst time you use a new environment. These commands would establish this

for our friend Joe Cool:



git config --global user.name "Joseph Cool"

git config --global user.email "jjc9@williams.edu"

git config --global push.default simple

git config --global core.editor emacs

You should, of course, use your own identity! Try to avoid being obscure: this identity is used by graders

to understand who authored an assignment.

In our �rst lab we will have cloned tailored �les that establish our identities as described above. If you

clone the starter repository and then, within that directory, source the con�gure script, it performs the

commands above.

Private CS134 Work Repositories.

Whenever we start working on a new lab in a new environment, say lab3, we clone our private repository

from the server. (I suggest this repository be stored in your local cs134 directory you constructed at the

beginning of the semester.) This gives us access to starter �les and handouts for that lab:

git clone ssh://22jjc9@davey.cs.williams.edu/~cs134/22jjc9/lab3.git ~/cs134/lab3

Notice that your name appears twice in this command. If you perform work in more than one environment

(say two or more OIT machines or your laptop), you'll need to clone (exactly once!) in each location.

From this point on, your workow consistently looks like:

1. pull at the beginning of a work session:

git pull

2. add and commit one or more times:

git add <changed files>

git commit -m ’<*useful* comments about changes>’

3. push at the end of the work session:

git push

When your assignments are graded, we will update your repository with a grade �le.

What To Do When You Use a New Machine

Occasionally, you'll have to start fresh on a new OIT machine. Here are the commands you'll likely �nd

useful as you start up:

mkdir cs134

cd cs134

git clone http://22jjc9@davey.cs.williams.edu/~cs134/shared.git shared

git clone http://22jjc9@davey.cs.williams.edu/~cs134/22jjc9/starter.git starter

source starter/configure

git clone http://22jjc9@davey.cs.williams.edu/~cs134/22jjc9/lab3.git lab3

?


