
Name: _______________________________________ Partner: ________________________________
Python Activity 61: Java – More Data Types

Java is programming language that shares some commonalities with Python. Understanding the differences

between Java and Python data types help us better understand the Python data structures that we know and love!

Critical Thinking Questions:

STRING

1. Match the Python code on the left with what you think is the Java equivalent on the right:
astr = "Pixel"

astr[3]

str[2:3]

Indexing

len(astr)

astr.find('x')

astr.split()

astr.split(',')

astr + astr

astr.strip()

Slicing operator

Immutable

astr.upper()

astr.lower()

str(astr.split())

String astr = "Pixel";

astr.length();

Method calls

astr.indexOf('x');

astr.concat(astr);

astr.toUpperCase();

astr.toLowerCase();

astr.charAt(3);

Immutable

astr.substring(2, 3);

astr.trim();

astr.split(",");

astr.split(" ");

Substrings through methods

Arrays.toString(astr.split(" "));

ARRAYLIST

2. Match the Python code on the left with what you think is the Java equivalent on the right:
alist = []

alist.append("Moone")

alist.append("Pixel")

print(alist)

alist[1]

alist[1] = "Dizzy"

ArrayList<String> alist = new ArrayList<String>();

alist.get(1);

alist.set(1, "Dizzy");

System.out.println(alist);

alist.add("Moone");

alist.add("Pixel");

Learning Objectives

Students will be able to:

Content:

• Compare and contrast Python & Java data types

• Describe the use of Java Strings, Arrays, ArrayLists, and Hashmaps

Process:

• Write Java code equivalents of Python code using Strings, Arrays, ArrayLists, and Hashmaps

Prior Knowledge

• Python concepts: Python, Java

FYI: Strings in Java are immutable like in Python, but do not support the [] slicing operator!

Dizzy

Moone

Pixel

ARRAY

3. a. Observe the following Java code (on the left) and its associated output (on the right):

Underline where you see the class, Arrays, being referenced. Why might using this class be

necessary? __

What might each of the lines of Java code do?

1 _____________________________________ 4 _____________________________________

2 _____________________________________ 5 _____________________________________

3 _____________________________________ 6 _____________________________________

b. Observe the following Java code below:

Underline the code that is different from the previous example.

What will be the output of line 6? _____________________________________

Do we have an equivalent to line 2 from this example in part (a)? Why might that be?

__

FYI: ArrayLists in Java are roughly equivalent to Lists in Python: they're both dynamic arrays that grow

& shrink in size automatically. However, Java ArrayLists cannot use the [] operator, nor can they

contain heterogeneous types of objects, and they require that you declare what type of object is

contained in the ArrayList.

Java code on the left, output on the right
1 import java.util.Arrays;

2 String[] myList = new String[] {"Pixel", "Dizzy", "Moone"};

3 System.out.println(Arrays.toString(myList));

4 System.out.println(myList[2]);

5 myList[0] = "Pickles";

6 System.out.println(Arrays.toString(myList));

FYI: An array is a primitive data type in Java that is somewhat similar to Python Lists. Arrays support

the [] operator, but they cannot dynamically shrink and grow: you need to specify its initial size, or

its values at declaration. Much like ArrayLists, arrays require you to specify what type of object is

stored in the array and hetereogeneous types of objects cannot be stored in them.

Java example
1 import java.util.Arrays;

2 String[] myList = new String[3];

3 myList[0] = "Pixel";

4 myList[1] = "Dizzy";

5 myList[2] = "Moone";

6 System.out.println(Arrays.toString(myList));

[Pixel, Dizzy, Moone]

Moone

[Pickles, Dizzy, Moone]

__

__

HASHMAP

4. Below, the Python code on the left accomplishes the same as the Java code on the right:
>>> cs_courses = dict()

>>> cs_courses[134] = "Intro"

>>> cs_courses[136] = "Data Struct"

>>> cs_courses[256] = "Algorithms"

>>> cs_courses[256]

'Algorithms'

>>> cs_courses[134]

'Intro'

>>> 134 in cs_course

True

>>> 361 in cs_courses
False

>>> "Data Struct" in cs_courses.values()

True

HashMap<Integer, String> csCourses;

csCourses = new HashMap<Integer, String>();

csCourses.put(134, "Intro");

csCourses.put(136, "Data Struct");

csCourses.put(256, "Algorithms");

csCourses.get(256);

Algorithms

csCourses.get(134);

Intro

csCourses.containsKey(134);

true

csCourses.containsKey(361);

false

csCourses.containsValue("Data Struct");

true

a. What do each of the lines of Java code do?

HashMap<Integer, String> csCourses;

csCourses = new HashMap<Integer, String>();

 __

csCourses.put(134, "Intro");

 __
csCourses.get(256);

 __

csCourses.containsKey(134);

 __

csCourses.containsValue("Data Struct");

 __

b. Why might the last two lines of Java code differ so much from their Python equivalents?

 __

FYI: Because Java is compiled rather than interpreted, there is no “interactive Java.” However, for the

sake of comparing to python, we’ll present Java below in an interactive-like format.

FYI: HashMaps in Java are roughly equivalent to dictionaries in Python. Both provide easy access to

key, value pairs. Both provide methods for efficiently interacting with the keys, values. And both

require keys to be unique. HashMaps do not support the [] operator; we must use methods instead.

