
Name: _______________________________________ Partner: ________________________________
Python Activity 53: Sorting

More efficient searching & sorting algorithms, means more resourceful software!

Concept Model:

CM1. The table below represents two approaches to sorting a deck of cards.

a. What might be the best case for the approach on the left? _______________________________

 What might be the worst case for the approach on the left? _________________________

b. Is the approach on the left how you typically sort a deck of cards? ____________

 What is your typical approach?

__

__

 Is your approach more efficient than the one described on the left? ____________

 What might be the best case for your approach? _______________________________

 What might be the worst case for your approach? _________________________

c. What might be the run-time for the first sorting algorithm?

__

What might be the run-time for your sorting algorithm?

__

Learning Objectives

Students will be able to:

Content:

• Identify best case and worst case scenarios for sorting algorithms

• Apply Big-O notation to measure the efficiency of additional algorithms

• Describe the selection and merge sort algorithms for sorting data

• Compare the timed run-times of algorithms

Process:

• Write code that implements selection sort and merge sort

Prior Knowledge

• Python concepts: Big-O notation, searching algorithms, recursion, str.format()

Sorting a Deck of Cards

Look at each card & find the lowest: How would you sort a deck of cards?

 Swap it to the first position

 Repeat!

CM2. Let's think about the relationship between operations' number of elements and run-time:

a. Label the following graph with the run-times they represent:

b. Which of these run-times are new to us? ____________________

Critical Thinking Questions:

1. Examine the following code for sorting for an item in a list using selection sort (the algorithm on

the left in CM1):

a. Add in-line comments to the code above where indicated (i. – iv.), explaining what the

code beneath it is doing

b. Which sorting algorithm is this most similar to from CM1? __________________

c. What is the best case scenario for this algorithm? ________________________________

What is the Big-O notation run-time of this algorithm in the best case? O(______)
d. What is the worst case scenario for this algorithm? ______________________________

What is the Big-O notation run-time of this algorithm in the worst case? O(______)

FYI: Recall that O(log2 n) (O(log n) to computer scientists), logarithmic run-times, indicate that if we

double the number of elements, it only increases the number of operations by 1. Or, in other words,

logarithms describe the number of times we can divide n by 2 until we get down to 1.

selection.py
def selection_sort(my_lst):

 # i. Comment?

 for i in range(len(my_lst)):

 ii. Comment?

 min_index = i

 for j in range(i+1, len(my_lst)):

 iii. Comment?

 if my_lst[j] < my_lst[min_index]:

 min_index = j

 iv. Comment?

 my_lst[i], my_lst[min_index] =

 my_lst[min_index], my_lst[i]

Run-times:

O(1)

O(n)

O(log n)

O(n log n)

O(n2)

2. Examine the following diagrams of another approach to sorting a list, merge sort, with an

example unsorted list of characters:

a. What is the basic idea of the diagram on the right? What is it trying to accomplish?

__

__

b. What is the basic idea of the diagram on the left? What is it trying to accomplish?

__

__

c. How do we sort a list of one element?

__

d. What is the run-time of the diagram on the right if there are n elements in the list?

__

What is the run-time of the diagram on the left if there are n//2 elements in each list?

__

e. How might we combine these two algorithms, merge on the left and mergesort on the

right in order to sort a given list of elements?

__

__

__

f. What is the run-time of this new algorithm? ___________________________

Merge Sort Diagram

3. Step through the code for merge() below, and explain what the following sections do:

def merge(a, b):

 i, j, k = 0, 0, 0

 len_a, len_b = len(a), len(b)

 c = []

 while i < len_a and j < len_b:

 if a[i] <= b[j]:

 c[k] = a[i]

 i += 1

 else:

 c[k] = b[j]

 j += 1

 k += 1

 if i < len_a:

 c.extend(a[i:])

 elif j < len_b:

 c.extend(b[j:])

 return c

4. Examine the following partially complete code for mergesorting a list:

a. Add in-line comments to the above code, describing what the commands below them do.

b. For the comment above that says # b. write a line of code to mergesort the left half of lst.

c. For the comment above that says # c. write a line of code to mergesort the right half of lst.

mergesort.py
def merge_sort(lst):

 n = len(lst)

 # Comment:

 if n == 0 or n == 1:

 return lst

 else:

 m = n//2 # Comment:

 # Recurse on left & right half

 # b. What should go here?

 # c. What should go here?

 # Comment:

 return merge(sort_lt, sort_rt)

Application Questions.

1. We can compare the run-times of these two algorithms, selection sort and mergesort, with some

timing code and a lot of data:

a. Fill in the "How many times faster" column in the table below with your guess about how many

times faster the fastest sorting algorithm will be, as compared to the slower algorithm:

len(word_lst) Algorithm Run-time How many times faster Timed

500 selection_sort O(n2) s
merge_sort O(n log n) s

7,000 selection_sort O(n2) s
merge_sort O(n log n) s

122,089 selection_sort O(n2) s
merge_sort O(n log n) s

b. Run the code to compare the time required by our two sorting algorithms (or watch your

instructor do so), and fill in the "Timed" column for the actual timed running of the algorithms.

c. Circle the guesses you had that were correct (or close!). In the cases that you weren't, explain how

you could have made a better prediction:

__

__

__

d. If we plot additional timed runnings of these two algorithms with matplotlib, we observe the

following plot:

Label the lines on the plot with the algorithm they represent.

Why might the blue line have a sudden pivot near n=5000?

Why might the orange line look flat?

timed_sorting.py
 def timed_sorting(word_lst):

 start = time()

 sorted_word_lst = selection_sort(word_lst)

 end = time()

 print("Selection sort takes {} secs".format(end - start))

 start = time()

 sorted_word_lst = merge_sort(word_lst)

 end = time()

 print("Merge sort takes {} secs".format(end - start))

