

Name: _______________________________________ Partner: ________________________________
Python Activity 41: Tic Tac Toe - Game

It’s best to think through your program design prior to coding!

Critical Thinking Questions:

1. Follow along in the class lecture, and match the following methods/concepts on the left to their

purpose (or output) on the right:

2. Follow along in class lecture, and fill out the Class Object Models below for Cube and

TTTcube: (Hint: Be sure to include each method’s return types, and the names of any

parameters!)

Learning Objectives

Students will be able to:

Content:

• Describe how TTTcube objects are implemented

• Summarize how to test newly developed code in isolation and why we might do so

• Explain the game logic for Tic-Tac-Toe in computational terms

• Consider common cases and edge cases in a given problem/solution

Process:

• Write code that implements TTTcube objects

• Write code that connects all our TTT classes together with game logic

Prior Knowledge

• Python concepts: user-defined classes, inheritance, tic-tac-toe

TTTcube

TTTcube()

ttt_cb.get_letter()

ttt_cb.set_letter(s)

str(ttt_cb)

Ex: 'X'

Creates a new tic-tac-toe cube instance with '-'

Public method to change value of calling cube object

Public method to return str of calling cube object

Cube is its parent class

class Cube

 Attributes:

 Methods:

class TTTcube

 Attributes:

 Methods:

3. a. Why might it be a good idea to test our class & methods in isolation? How might we do that

for the TTTcube class?

b. Write a few lines of code to create a new TTTcube, print one of the letters, and change the

value of a letter:

4. Consider the game logic for Tic-Tac-Toe.

a. When designing a computational solution, it's a good idea to consider a common case initially.

What is an example of a common case in our Tic-Tac-Toe game?

b. What might be examples of less common cases in our game?

c. What must the game do when the user types 'r'or 'q'when asked for input?

d. When designing a computational solution, it's also a good idea to increase the robustness of our

solution by handling edge cases (unexpected, or very uncommon cases). What might be an edge

case in our Tic-Tac-Toe game?

5. Follow along in the class lecture and fill in the following tic-tac-toe game logic decision map:

Application Questions: Use Python to check your work

(The Boggle Lab is a really good application of these concepts!)

