
Folks, this is a brand new activity. If you encounter any issues/typos, please let Iris know!

Name: _______________________________________ Partner: ________________________________

Python Activity 33: Recursion versus Iteration
When should we choose a recursive approach versus an iterative approach?

Concept Model:

Consider this real world task:

We are trying to find a key that is lost in a

pile of boxes within a pile of boxes within a

pile of boxes within…

In this case, we could describe the algorithm

using an iterative approach. It would look

something like the image on the left:

Or, we could use a recursive approach which is described by the image on the right (above).

CM1. Which approach is simpler to describe? ___________________________

CM2. Which approach requires fewer keystrokes? ___________________________

Learning Objectives

Students will be able to:

Content:

• List pros and cons of using recursion to solve problems

• Diagram the function frame stack for recursive & iterative functions

Process:

• Write iterative and recursive solutions to a given problem

Prior Knowledge

• Python concepts: recursion, loops, function frame model

© Aditya
Bhargava

While searching within boxes of boxes of boxes may seem like a stretched example, it is quite

similar to finding a file of a puppy within a directory structure, and in fact, computer scientists

do typically search file directory structures (and other tree-shaped structures) recursively!:

CM3. What other tasks fit this tree-shaped structure, and are therefore optimally solved with

recursion?

__

Critical Thinking Questions:

1. Write a function to sum up a list of numbers, iteratively, such that calling

>>> sum_list_iterative([3, 4, 20, 12, 2, 20]) will return 61:

sum_list_iterative.py

a. Draw a function frame diagram for a call to this function, similar to what we did in the

POGIL Activity on Function Frame Stack Model.

 (Hint: The first function frame is begun for you below, do you need more?)

>>> sum_list_iterative([1, 2, 3])

def sum_list_iterative(numlist):

[1, 2, 3]

sum_list_iterative([1, 2, 3])

numlist

b. How many function frames are created? ________________

 (Hint: How many function calls to sum_list_iterative(..) does Python make?)

2. Write a recursive version of the previous function to sum up a list of numbers, such that calling

>>> sum_list_iterative([3, 4, 20, 12, 2, 20]) will return 61:

a. What is our base case? __

b. What is our small step? __

c. How do we break the journey down? ___________________________________

sumList.py

d. Draw a function frame diagram for a call to this function, similar to what we did in the

POGIL Activity on Function Frame Stack Model.

 (Hint: The first function frame is begun for you below, do you need more?)

>>> sum_list([1, 2, 3])

e. How many function frames are created? ________________

 (Hint: How many function calls to sum_list (..) does Python make?)

def sum_list(numlist):

numlist

[1, 2, 3]

sum_list([1, 2, 3])

3. In the table below, specify if the statement on the left is a pro or con of iteration or

recursion (or both):

Statement

Pro/

Con

Iteration/

Recursion

Can lead to syntactically simpler programs.

Has a steeper learning curve.

You will see code like this out in the real world.

Is best for writing tree-type data structures.

Creating new function frame stacks requires computational overhead.

Is easier for novice computer scientists to understand.

Is advanced computer science problem-solving approach.

Application Questions: Use the Python Interpreter to check your work

1. a. Write a function, file_found_iterative, that takes a list of lists (folder) and a

target item to look for in the list of lists. Use loops to find the target item. The function returns

True if the item is found, False otherwise.

b. Write a function similar to file_found_iterative, file_found_recursive, but

instead uses a recursive approach.

c. Which of these approaches may work for lists of lists of lists? Which may only work for a list

of lists?

2. a. Implement two functions, fibonacci_iterative(num) and

fibonacci_recursive(num), one which finds the numth Fibonacci number using iteration

(loops), and the other recursively. Recall that:

Fibonaccinum = Fibonaccinum-1 + Fibonaccinum-2

Fibonacci0 = 0 and Fibonacci1 = 1

Once you’ve done so, write code in if __name__ == "__main__" to time how long these

two approaches take (you may need to use rather large values!). Recall that if we from time

import time, we can use the time() function to retrieve number of milliseconds.

b. Which one of these functions is faster?

c. Write a third function, fibonacci_recurs_fast(num), that uses your recursive

approach, but stores (and retrieves) previously computed Fibonacci numbers (and their values) in

a dictionary. Then compare the runtimes of this function to the previous two.

d. Which of your three functions is the fastest?

