

Name: _______________________________________ Partner: ________________________________

Python Activity 29: Recursion
Some solutions are just the same steps repeated again and again on a subset of the input data.

Concept Model:

Consider the following story:

There once was a monster and a sorcerer's apprentice. The apprentice was tasked with

determining which numbers in a list were odd (in contrast to even, not as in unusual), and he

needed the monster's help. The apprentice went down to the dungeons and asked, "Monster, I

need to know if any of the numbers in this list are odd: [3142, 5798, 6550, 8914]"

The monster, being surly and rather dissatisfied with his dungeon accomodations replied:

"Sorry, I can only tell you if the first number of the list is odd."

The apprentice pleaded, "But I need to know if any number in the list is odd, not just the first!"

Unmoved, the monster retorted,

 "Well, I'll only look at the first number, but I'll look at as many lists as you like."

1. What should the sorcerer's apprentice do to solve his problem?

__

__

And so, the sorceror's apprentice presented the monster with the original list.

Apprentice: [3142, 5798, 6550, 8914]

Monster: The first number is not odd.

And then, the sorcerer's apprentice presented the monster with a modified version of the list:

Apprentice: [3142, 5798, 6550, 8914]

Monster: The first number is not odd.

Learning Objectives

Students will be able to:

Content:

• Define recursion and explain why it is useful.

• List the three steps for building recursive solutions.

Process:

• Predict the output of recursive programs.

• Write code that uses recursion.

Prior Knowledge

• Python concepts: functions, conditionals, data structures, return

And then, the sorcerer's apprentice presented the monster with a modified version of the list:

Apprentice: [3142, 5798, 6550, 8914]

Monster: The first number is not odd.

Once more, the sorcerer's apprentice presented the monster with a modified version of the list:

Apprentice: [3142, 5798, 6550, 8914]

Monster: The first number is not odd.

Finally, the sorcerer's apprentice presented the monster with a modified version of the list:

Apprentice: [3142, 5798, 6550, 8914]

Monster: That's an empty list, it can't be odd!

Quite satisfied with the monster's input, the apprentice smiled and remarked, "Ah, so none of the

numbers are odd, thank you!" The monster responded, "But how can you know that, I only told

you if the first number was odd!"

2. How does the apprentice know that all the numbers are not odd?

__

__

The apprentice replied, "I gave you the following sub-lists of my original list, and you gave me

an answer for the first item in each:"
 [3142, 5798, 6550, 8914]

 [5798, 6550, 8914]

 [6550, 8914]

[8914]

 []

The monster simply grumbled, "It looks like you've discovered recursion."

3. How does the monster know when to stop checking values?

__

__

4. What is the process the monster repeatedly executes?

__

__

5. How does the apprentice get the monster to proceed to the next number?

__

__

6. Based on this story, how might you define recursion?

__

__

Critical Thinking Questions:

1. Examine the sample code below from interactive python which represents the problem & solution

from the Concept Model story above:

Interactive Python

a. What does each line of code do?

0 __

 1 __

 2 __

 3 __

4 __

5 __

6 __

7 __

b. On which line(s) is the stopping condition? ___________________________

c. On which lines are the small repeated steps? ___________________________

d. On which line is the journey broken down into smaller pieces? ______________

e. Which lines might be said to be the Monster's actions? _____________________

f. Which lines might be said to be the Apprentice's actions? _____________________

g. When mylist = [3142, 5798, 6550, 8914], what is the argument passed to

is_first_odd(..) each time it's called on line 5?

On line 7:_____________________ Third time (5):___________________

First time (5):____________________ Fourth time (5):__________________

Second time (5):__________________

FYI: Recursion is a method of solving a problem where the solution depends on solutions to smaller

instances of the same problem. There are three steps to consider when building a recursive problem

solution:

1. What is the stopping condition / base case?

2. What is the small, repeated step?

3. How do we break the journey down into a smaller piece?

0 >>> def is_first_odd(lst):

1 ... if len(lst) < 1:

2 ... return False

3 ... elif lst[0]%2 != 0:

4 ... return True

5 ... return is_first_odd(lst[1:])

6 >>> mylist = [3142, 5798, 6550, 8914]

7 >>> print("Has odd number?", is_first_odd(mylist))

h. If mylist = [0, 7, 9, 4, 2], how many times will is_first_odd(..) be

called? What will the arguments passed to the recursive call each time be?

__

__

__

__

__

2. Examine the sample code below from interactive python which contains another recursive function:

Interactive Python

a. What does each line of code do?

0 __

 1 __

 2 __

 3 __

4 __

5 __

7 __

b. On which line is the stopping condition? ____________________________

c. On which line(s) are the small repeated steps? ____________________________

d. On which line is the journey broken down into smaller pieces? ______________

e. When the initial arguments passed to power(..) are 5 and 4, as on line 7, fill out

what happens on line 4 each time power(..) is called?

On line 7: power(___, ___)

First (4): return ___ * power(___, ___)

Second (4): return ___ * power(___, ___)

Third (4): return ___ * power(___, ___)

0 >>> def power(a, n):

1 ... if n == 0:

2 ... return 1

3 ... else:

4 ... return a * power(a, n-1)

5 >>> print(power(5, 0))

6 1

7 >>> print(power(5, 4))

8 625

Fourth (4): return ___ * power(___, ___)

f. When the initial arguments passed to power(..)are 5 and 0, as on line 5, how many

times is the power(..) function called? __________________________ times

h. Compare the number of function calls to power(..) in (e) and (f). Why are these

numbers different?

3. Examine the sample code below and its corresponding output:

mystery1.py

Output

a. What does each line of code do?

0 __

 1 __

 2 __

 3 __

4 __

5 __

7 __

b. On which line is the stopping condition? ____________________________

c. On which lines are the small repeated steps? ____________________________

d. On which line is the journey broken down into smaller pieces? ______________

e. When the initial argument passed to mystery1 is 5, as on line 7, what is passed to

mystery1(..) as an argument each time it's called on line 5?

On line 7: mystery1(___)

First (5): return mystery1(___)

2nd (5): return mystery1(___)

3rd (5): return mystery1(___)

4th (5): return mystery1(___)

0 def mystery1(n):

1 if n < 1:

2 return 0

3 else:

4 print(n)

5 return mystery1(n-1)

6 if __name__ == '__main__':

7 print(mystery1(5))

5

4

3

2

1

0

5th (5): return mystery1(___)

f. When the initial argument passed to mystery1 is 5, as on line 7, what is returned by

mystery1(..) each time it's called on line 5?

1st time (5): return mystery1(__________________) returns ____________

2nd time (5): return mystery1(__________________)returns ____________

3rd time (5): return mystery1(__________________)returns ___________

4th time (5): return mystery1(__________________)returns ___________

5th time (5): return mystery1(__________________)returns ___________

g. What might mystery1(4)return? ________________

h. What does the mystery1(n)function do?

 __

4. Examine the sample code below and its corresponding output, which is similar to the previous

question:

mystery2.py

Output

a. Circle the code in mystery2(..) that differs from mystery1(..). What do these

new lines of code do?

Line _______: __

Line _______: __

Line _______: __

Line _______: __

b. On which line(s) is the stopping condition? __________________________

c. On which lines are the small repeated steps? ____________________________

d. On which line is the journey broken down into smaller pieces? ______________

e. When the initial argument passed to mystery2 is 5, as on line 8, what is returned by

mystery2(..) each time it's called on line 4?

1st time (5): return mystery1(__________________) returns ____________

2nd time (5): return mystery1(__________________)returns ____________

0 def mystery2(n):

1 if n < 1:

2 return 0

3 else:

4 result = mystery2(n-1)

5 print(n)

6 return result

7 if __name__ == '__main__':

8 mystery2(5)

1

2

3

4

5

3rd time (5): return mystery1(__________________)returns ___________

4th time (5): return mystery1(__________________)returns ___________

5th time (5): return mystery1(__________________)returns ___________

g. What might mystery2(4)return? ________________

h. If we update line 8 to print(mystery2(n)), the output is the same as above, but a 0

appears after the 5 that is displayed. Why might that be? (Hint: Where is result printed?)

__

i. What does the mystery2(n)function do?

 __

5. Fibonacci Sequences appear throughout nature, as in the branching of trees, fruitlets of a pineapple,

the flowering of an artichoke, among many other examples1. Fibonacci numbers are often defined by

a recursive relationship:

Fibonacci Numbers Definition

Fibonacci Spiral

a. What might be the base case or stopping condition for calculating the nth Fibonacci

number? __

b. What might be the small, repeated steps? ________________________________

c. How might we break down the journey into one small step and a smaller journey?

1 https://en.wikipedia.org/wiki/Fibonacci_number#Nature

If we wish to find the 6th Fibonacci number, we would perform the following calculations:
F6 =

= F6-1 + F6-2

= (F5-1 + F5-2) + (F4-1 + F4-2)

= ((F4-1 + F4-2) + (F3-1 + F3-2)) + ((F3-1 + F3-2) + (F2-1+ F2-2))

= (((F3-1 + F3-2)+ (F2-1+ F2-2))+ ((F2-1+ F2-2)+ F1)) + (((F2-1+ F2-2) + F1) + (F1+ F0))

= ((((F2-1+ F2-2)+ F1)+ (F1+ F0))+ ((F1+ F0)+ F1)) + (((F1+ F0) + F1) + (F1+ F0))

= ((((F1+ F0)+ F0)+ F1) + (F1+ F0))+ ((F1+ F0)+ F1)) + (((1 + 0) + 1) + (1+0))

= ((((1+ 0)+ 0)+ 1) + (1+0))+ ((1+ 0)+ 1)) + (((1 + 0) + 1) + (1+0))

= 8

 F0 = 0, F1 = 1,

and

 Fn = Fn-1 + Fn-2

The first 10 Fibonacci numbers: F1

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

0 1 1 2 3 5 8 13 21 34 55 89 144

https://en.wikipedia.org/wiki/Fibonacci_number#Nature

d. Complete the recursive function, fibonacci(n), below such that it will print the nth

Fibonacci value for a given number, n.

def fibonacci(n):
 # base case 1

 # base case 2

 # step + smaller journey

if __name__ == "__main__":
 print(fibonacci(6)) # should print 8

print(fibonacci(7)) # should print 13

Application Questions: Use the Python Interpreter to check your work

1. Write a recursive function, recursive_list_length(any_list), that will return the

length of a given list, any_list, using recursive means:

2. What does the following program do? (Step-through with examples for fi,in_sequence).

 def mystery3(fi, in_sequence):

 if not in_sequence:

 return False

 elif fi == in_sequence[0]:

 return True

 else:

return False or mystery2(fi, in_sequence[1:])

3. Write a recursive function, count_char(ch, any_string), that will count the number of

occurrences of a given character, ch, in a given string, any_string, using recursive means:

4. Write a recursive function, get_item(index, start, any_list), that will return the

element located at index, in a given list, any_list, using recursive means. It should start

looking at the index provided in start and should return None if that index is not found:

