Name:

Python Activity 26: Plotting Data

Plotting data is useful, but first we have to get data into the right format.

Learning Objectives

Students will be able to:
Content:

- Describe what is needed in order to plot data
- Predict what matplotlib code will do

Process:

- Write code that rearranges data for plotting
- Write code that plots data with appropriate labels

Prior Knowledge

- Python concepts: import, x\&y axes, lists, loops

Critical Thinking Questions:

1. Examine the sample code below, which uses data on Lickety Split's yearly ice cream sales of their flavor, Purple Cow, and the output from this code:
```
                    Set-up Code
import matplotlib.pyplot as plt
years = [2022, 2021, 2020, 2019, 2018, 2017]
num_sales = [1027, 992, 891, 955, 743, 904]
x_values = years
Y_values = num_sales
plt.plot(x_values, y_values)
plt.show()
```

Sample Output

a. Circle the code concepts that are new to us.
b. What type of variable is num_sales?

What type of variable are the elements of num_sales?
What does the data in num_sales represent? \qquad
What is the smallest value of the elements in num_sales? \qquad
What is the largest value of the elements in num_sales? \qquad
What is the smallest value of the X -axis in the sample output?

What is the largest value of the X -axis in the sample output?
How might the data in years relate to the values in the X -axis of the output?
c. What type of variable is num_sales?

What type of variable are the elements of num_sales?
\qquad

What does the data in num_sales represent? \qquad
What is the smallest value of the elements in num_sales? \qquad
What is the largest value of the elements in num_sales? \qquad
What is the smallest value of the Y-axis in the sample output?
What is the largest value of the Y -axis in the sample output?
How might the data in num_sales relate to the values in the Y-axis of the output? \qquad
d. What might the lines with, plt.plot (x, y) \& plt. show(), be doing?
e. What might happen to the output, if we switched the x _values and y _values where they're assigned?
f. What might the line, import matplotlib.pyplot as plt, do?

FYI: When we import a module, we can use the as keyword to specify a shorter name that we can refer to that module as in our code. For very common modules, such as matplotlib, this is very common practice.
2. Examine the sample code and output below, which continues from Question 1:

Sample Code, continued	Sample Output
```plt.plot(years, num_sales) plt.xticks(years[::2]) plt.show()```	

a. Circle the code that is different from Question1.
b. Circle what is different in this sample output, compared to Question 1's output.
c. Which of this new code might be responsible for the changes we see in the sample output?
d. What might the plt.xticks(..) method do?
e. If you had to guess, what might a plt.yticks (. .) method do?
f. If we replaced line 13 with plt.xticks(years,['Y1', 'Y2', 'Y3', 'Y4', 'Y5', 'Y6']) the X-tick on our plot that currently says 2018 would be replaced with Y2, 2020 with $Y 4$, and 2022 with $Y 6$. Why might that be?

What might the second parameter of plt.xticks(..) represent?
3. Examine the sample code and output below, which continues from Questions $1 \& 2$ :

```
Sample Code, continued
plt.figure(figsize=(4, 4))
plt.plot(years, num_sales)
plt.xticks(years)
plt.xlabel("Year")
plt.ylabel("Num Cones Sold")
plt.title("Num Cones Sold Per Year")
plt.show()
plu.tille("Num cones sold Per Year")
```


## Sample Output


a. Circle the code that is different from Question 2.
b. Circle what is different in this sample output, compared to Question 2's output.
c. Match the function below, on the left, to what you think it might do, on the right:

```
plt.figure(figsize=(4, 4))
plt.plot(x_vals, y_vals)
plt.xticks(listXticks)
plt.yticks(l1,l2)
plt.xlabel(a_string)
plt.ylabel(a_string)
plt.title(a_string)
plt.show()
```

Specifies which values to show on the X -axis The values to show on the Y-axis, and their labels Specifies a top caption for the plot Specifies the X-axis label Specifies the size of the plot Specifies the Y-axis label Displays the the completed plot Makes the plot
4. Examine the sample code and output below:


## Sample Code

import matplotlib.pyplot as plt
flavors = ["Purple Cow", "Sweet Cream", "Mudpie"]
num_sales $=[1027,1509,2231]$
\# Create a new figure:
plt.figure()
\# Create a bar chart
plt.bar(flavors, num_sales)
plt.xticks(flavors, flavors, rotation=90)
\# axis labels and title
plt.xlabel("Flavor")
plt.ylabel("Num Cones Sold")
plt.title("Num Cones Sold in 2022")
a. Circle the code that is different from Question 3.
b. Circle what is different in this sample output, compared to Question 1's output.

What kind of chart did we make in Question 1-3?
What kind of chart did we make in this Question 4?

- Which of the code we circled in (a) might be responsible for the change in chart type?
c. What variable represents the X -values in this example? $\qquad$
What variable represents the X -values in Question 1-3? $\qquad$
How do these two variables differ?
d. What variable represents the Y-values in this example? $\qquad$
What variable represents the Y-values in Question 1-3? $\qquad$
How do these two variables differ?
e. What type of object is flavors? $\qquad$ of $\qquad$
What does flavors represent in the above code?
What type of object is num_sales? $\qquad$ of $\qquad$

What does num_sales represent in the above code?
f. If you had to guess, what might the rotation=90 argument value do to our X-ticks?

Application Questions: Use the Python Interpreter to check your work.

TBD.

