
Name: _______________________________________ Partner: ________________________________
Python Activity 23alt: Sorting

Ordered data makes finding data more efficient!

Concept Model:

CM1. The table below represents two approaches to sorting a deck of cards.

a. What might be the best case for the approach on the left? _______________________

What might be the average case for the approach on the left? ______________________

 What might be the worst case for the approach on the left? _______________________

b. Is the approach on the left how you typically sort a deck of cards? ____________

 What is your typical approach?

__

__

 What might be the best case for your approach? _____________________________

 What might be the average case for your approach? _____________________________

 What might be the worst case for your approach? _________________________

 Is your approach more efficient than the one described on the left? ____________

Learning Objectives

Students will be able to:

Content:

• Identify best case and worst case scenarios for sorting algorithms

• Describe the selection and insertion sort algorithms for sorting data

• Compare the timed run-times of algorithms

Process:

• Write code that implements selection sort and insertion sort

Prior Knowledge

• Python concepts: searching algorithms

Sorting a Deck of Cards

Look at each card & find the lowest: How would you sort a deck of cards?

 Swap it to the first unsorted position

 Repeat!

c. When we add an additional n cards to our shuffled deck, how many additional operations

might we have to complete to sort the deck with the approach on the left?

__

What if we add an additional n cards and use your sorting approach?

__

d. The sorting algorithm we describe on the left is called selection sort. Why might that be

an appropriate name for this algorithm?

__

Critical Thinking Questions:

1. Examine the following code for sorting for an item in a list using selection sort (the

algorithm on the left in CM1):

a. Add in-line comments to the code above where indicated (i. – iv.), explaining what the

code beneath it is doing

selection.py
def selection_sort(target_list):

 # i. Comment?

 for i in range(len(target_list)):

 ii. Comment?

 min_index = i

 for j in range(i+1, len(target_list)):

 iii. Comment?

 if target_list[j] < target_list[min_index]:

 min_index = j

 iv. Comment?

 tmp = target_list[i]

 target_list[i] = target_list[min_index]

 target_list[min_index] = tmp

b. Let's think about the relationship between number of elements and number of operations.

Observe the plot below which shows the amount of time (y-axis) it takes to sort a shuffled list

using selection sort, as the number of items in that list increases (x-axis):

a. If you had to fit the empirical runtimes above to a more generalized runtime plot from the ones

shown below, what would you you choose?

O(n2) or O(n) or O(log n) or O(1) ?

2. Examine the following diagrams of another approach to sorting a list, insertion sort, with an

example unsorted list of characters:

a. What is the basic idea of the diagram above? What is it trying to accomplish?

__

__

__

__

Insertion Sort Diagram

i = 1 i = 2

b. Step through the code, and explain what the following lines do:

def insertion_sort(target_list):

 for i in range(1, len(target_list)):

 current_val = target_list[i]

 j = i

 while j > 0 and target_list[j-1] > current_val:

 target_list[j] = target_list[j-1]

 j = j - 1

 target_list[j] = current_val

c. This algorithm is called insertion sort. Why might that be?

__

3. Observe the plot below which shows the amount of time (y-axis) it takes to sort a fully

shuffled list, as the number of items in that list increases (x-axis), for both insertion sort

and selection sort.

a. What might be the best case scenario for insertion sort?

__

What might be the worst case scenario for insertion sort?

__

b. When we add n additional elements to our list to be sorted, how many more

operations/comparisons does insertion sort have to do?

__

4. As in the previous question, insertion sort may appear to perform identically to selection sort, but

it has slightly more efficient behavior when the data has a certain property.

a. Under which scenario(s) might insertion sort perform better than selection sort:

(Hint: it might be helpful to think about the list [2, 5 , 1, 25, 50, 100])

When the data is in reverse sorted order When all the items are the same

When the data is already sorted When the data is only lightly shuffled

Why might insertion sort perform better in this situation?

__

__

__

b. Observe the plot below which shows the amount of time (y-axis) it takes to sort a

lightly shuffled list, as the number of items in that list increases (x-axis), for both

insertion sort and selection sort.

Why might insertion sort perform so much better than selection sort for lightly shuffled lists, but

not fully shuffled?

__

__

__

5. Observe the following session in interactive python below:

a. What might the sorted(..) built-in function do?

__

b. If we wanted to use the output from the sorted(..) built-in function, what would we have to

do?

__

 FYI: The python sorted(..) built-in function uses insertion sort for smaller lists (up to around length

50), and a faster sorting algorithm for larger lists.

Application Questions.

1. There’s many more sorting algorithms, and we’ll discuss some later in the semester. For

now, consider the Bogo sorting algorithm: It reshuffles the list until it’s sorted.

a. Write some pseudocode that would implement this algorithm:

b. What is the best case scenario for this algorithm?

 What is the worst case scenario for this algorithm?

c. When you add n new items to the list to be sorted, how many additional

operations/comparisons are required? __________________________

d. Is this a “good” algorithm? Why/not?

__

Interactive Python
>>> lst = [25, 17, 1, 39, 8]

>>> sorted(lst)

[1, 8, 17, 25, 39]

