
Part of Fall 2023 reorganization.

Name: _______________________________________ Partner: ________________________________
Python Activity 21a: List Comprehensions

Very common actions, like making a simple list, have some shortcuts in python.

Critical Thinking Questions:

1. Examine the sample code that converts a list of US Dollar amounts to British pound.

Sample Code

a. What is the accumulator variable? ____________________________

What is the looping variable? _____________________________

 What is the sequence we're looping over? _____________________________

b. What part of the code converts the values of monies from USD to GBP?

__

c. What is being added to the accumulator variable? ____________

d. What are the elements of the list, gbp, at the end of this code?

__

2. The following code below results in identical outcomes as the above Sample Code:

a. What is the accumulator variable? ____________________________

What is the looping variable? _____________________________

 What is the sequence we're looping over? _____________________________

b. What part of the code converts the values of monies from USD to GBP?

__

c. What is being added to the accumulator variable? ____________

Learning Objectives

Students will be able to:

Content:

• Define a list comprehension

• Describe the key pieces of constructing a list comprehension

Process:

• Write code to construct lists using list comprehensions with mapping and filtering

• Convert multi-line list construction loops into one-line list comprehensions.

Prior Knowledge

• Python concepts: lists, for-each loops, conditionals, range()

0 monies = [1.22, 5.50, 3]

1 gbp = []

2 for usd in monies:

3 gbp += [usd*0.9]

0 monies = [1.22, 5.50, 3]

1 gbp = [usd*0.9 for usd in monies]

d. What are the elements of the list, gbp, at the end of this code?

__

e. How do we know that gbp is a list? (Hint: What punctuation typically indicates lists?)

3. Examine the sample code below which also uses a list comprehension:

Sample Code

a. What differs in this list comprehension that we did not have in the previous USD/GBP

example?

b. What does the variable wd represent in this code?

c. What does the code if len(wd) > 6 do?

d. Why is this line of code enclosed in square brackets?

e. When this code completes execution, ['loooooong'] is stored in the longer

variable. Why might this be?:

f. Write code to create a list that contains only words that begin with the letter 'p'. Use a list

comprehension:

 __

__

FYI: List Comprehensions provide a concise way to create & manipulate lists and are particularly

useful for two of the common patterns we see when using lists and loops. One of these patterns is

mapping in which we iterate over a list and return a new list that results from performing an

operation on each element of the original list, as in the example above.

FYI: A second common pattern that we often use a list comprehension for is filtering in which we

iterate over a list and return a new list that results from keeping only elements of the original list

that satisfy some condition, as in the example above.

FYI: You can imagine visually breaking down the syntax of a list comprehension as follows:
 result_list = [<transform> <iteration> <boolean conditional>]

 The Boolean conditional works as a filter and may be omitted. Likewise, the transformation may

not actually change the value.

0 words = ["short", "petite", "loooooong", "puny"]

1 longer = [wd for wd in words if len(wd) > 6]

4. Examine the following code:

a. What does the code on line 3 do?

__

b. What will new_lst contain when this code completes execution?

 __

c. Is this an example of mapping or filtering? __________________________________

d. Construct a list comprehension that accomplishes the same tasks as this example code:

 __

__

5. Examine the following code from an interactive Python session:

a. When we call has_sub(dog, 'lly')on line 3, what does the function return?

__

b. Construct a list comprehension that accomplishes the same tasks as this example code, but

without the function has_sub(..):

 __

__

Application Questions: Use the Python Interpreter to check your work

1. Write a list comprehension to make a copy of the list, my_lst:

2. Write a list comprehension to create a list of all numbers between 0 and 10 (Hint: range(..)):

0 test_str = "Hello 12345 World"

1 new_lst = []

2 for x in test_str:

3 if x in "1234567890":

4 new_lst += [x]

0 >>> def has_sub(word, substring):

1 ... return substring in word

2 >>> names = ['pixel','sally','wally','artie','jerry']

3 >>> similar = [dog for dog in names if has_sub(dog,'lly')]

4 >>> similar

5 ['sally', 'wally']

3. Write a function that capitalizes a list of strings into a new list, using list comprehensions. Return

the new list. Do not modify the given list!
def capitalize(string_lst):

4. Write a list comprehension to generate a list, words, where each element is a line from a file,

/usr/share/dict/words, stripped of leading and trailing whitespaces:

 words = __

5. Write a function that returns a list containing the values of num_lst squared. Use a list

comprehension. Do not modify the given list, num_lst!
def squared(num_lst):

6. Using a list comprehension, write a function that returns a list containing the values of num_lst

squared, but only of the prime numbers in numList. You can use the function is_prime(..)

to determine if a given number is prime. Return the new list. Do not modify the given list!
def square_primes(num_lst):

def is_prime(num):

returns True if num is a prime number, False if it isn’t.

