Part of Fall 2023 reorganization.

Name: Partner:

Python Activity 21a: List Comprehensions
Very common actions, like making a simple list, have some shortcuts in python.

Learning Objectives

Students will be able to:

Content:

e Define a list comprehension

e Describe the key pieces of constructing a list comprehension

Process:

e Write code to construct lists using list comprehensions with mapping and filtering
e Convert multi-line list construction loops into one-line list comprehensions.

Prior Knowledge

e Python concepts: lists, for-each loops, conditionals, range()

Critical Thinking Questions:

1. Examine the sample code that converts a list of US Dollar amounts to British pound.

Sample Code

0 monies = [1.22, 5.50, 3]
1 gbp = T[]

2 for usd in monies:

3 gbp += [usd*0.9]

a. What is the accumulator variable?

What is the looping variable?

What is the sequence we're looping over?

b. What part of the code converts the values of monies from USD to GBP?
c. What is being added to the accumulator variable?
d. What are the elements of the list, gbp, at the end of this code?
2. The following code below results in identical outcomes as the above Sample Code:
0 monies = [1.22, 5.50, 3]
1 gbp = [usd*0.9 for usd in monies]
Owx . What is the accumulator variable?

What is the looping variable?

What is the sequence we're looping over?

O= o What part of the code converts the values of monies from USD to GBP?

Ox . What is being added to the accumulator variable?

What are the elements of the list, gbp, at the end of this code?

How do we know that gbp is a list? (Hint: What punctuation typically indicates lists?)

FYI: List Comprehensions provide a concise way to create & manipulate lists and are particularly
useful for two of the common patterns we see when using lists and loops. One of these patterns is
mapping in which we iterate over a list and return a new list that results from performing an

operation on each element of the original list, as in the example above.

Examine the sample code below which also uses a list comprehension:
Sample Code

0 words = ["short", "petite", "loooooong", "puny"]
1 longer = [wd for wd in words if len(wd) > 6]

a. What differs in this list comprehension that we did not have in the previous USD/GBP
example?

b. What does the variable wd represent in this code?

c. What does the code 1f len (wd) > 6 do?

d. Why is this line of code enclosed in square brackets?

e. When this code completes execution, [' loooooong'] is stored in the 1onger

variable. Why might this be?:

Ow ¢ Write code to create a list that contains only words that begin with the letter 'p'. Use a list
y g p

comprehension:

FYI: A second common pattern that we often use a list comprehension for is filtering in which we
iterate over a list and return a new list that results from keeping only elements of the original list
that satisfy some condition, as in the example above.

FYI: You can imagine visually breaking down the syntax of a list comprehension as follows:
result list = [<transform> <iteration> <boolean conditional>]

The Boolean conditional works as a filter and may be omitted. Likewise, the transformation may
not actually change the value.

4. Examine the following code:

0 test str = "Hello 12345 World"
1 new 1st = []

2 for x in test str:

3 if x in "1234567890":

4 new lst += [x]

a. What does the code on line 3 do?

b. What will new 1st contain when this code completes execution?

Is this an example of mapping or filtering?

O=» d. Construct a list comprehension that accomplishes the same tasks as this example code:

5. Examine the following code from an interactive Python session:
0 >>> def has sub(word, substring):
1 ... return substring in word
2 >>> names = ['pixel','sally','wally', 'artie', 'jerry"]
3 >>> similar = [dog for dog in names if has sub(dog, "11ly')]
4 >>> similar
5 ['sally', 'wally']

a. When we call has sub (dog, 'lly')on line 3, what does the function return?

O=w ©b. Construct a list comprehension that accomplishes the same tasks as this example code, but
without the function has sub (..) :

Application Questions: Use the Python Interpreter to check your work

1. Write a list comprehension to make a copy of the list, my 1st:

2. Write a list comprehension to create a list of all numbers between 0 and 10 (Hint: range (..)) :

3. Write a function that capitalizes a list of strings into a new list, using list comprehensions. Return
the new list. Do not modify the given list!
def capitalize(string 1lst):

4. Write a list comprehension to generate a list, words, where each element is a line from a file,
/usr/share/dict/words, stripped of leading and trailing whitespaces:

words =

5. Write a function that returns a list containing the values of num 1st squared. Use a list
comprehension. Do not modify the given list, num 1st!
def squared(num 1lst):

6. Using a list comprehension, write a function that returns a list containing the values of num 1st
squared, but only of the prime numbers in numList. You can use the function is prime (..)

to determine if a given number is prime. Return the new list. Do not modify the given list!
def square primes(num lst):

def is prime (num) :
returns True if num is a prime number, False if it isn’t.

