CSCI 134 Fall 2021:

Sorting

Nov 29, 2021

Shikha Singh, 9AM
Jeannie Albrecht, 10AM
Announcements & Logistics

• Lab 9 Boggle
 • Parts 3 & 4 (BoggleWords & Game) are due Dec 1/2 at 10 pm
• HW 9 will be released on Wed, due next Mon @ 10 pm
• Shift in Shikha's office hours just this week due to conflicts:
 • Mon, Tues: 3 - 4 pm
 • Wed: 3.30 - 5.30 pm
 • See course calendar for up to date hours
• Final exam reminder: Dec 18 @ 9:30 am
• Last lab (Lab 10) will be a short Java program
• We will discuss Java in last few lectures after we wrap up sorting today

Do You Have Any Questions?
Last Time: Efficiency & Searching

• Measured efficiency as number of steps taken by algorithm on worst-case inputs of a given size

• Introduced Big-Oh notation which captures the rate at which the number of steps taken by the algorithm grows wrt size of input \(n \), "as \(n \) gets large"

• Compared array vs linked lists

• Compared linear vs binary search
Today: Searching and Sorting

• Wrap up our discussion of binary search including a runtime analysis

• Discuss some classic sorting algorithms:

 • *Selection sorting* in $O(n^2)$ time

 • A brief (high level) discussion of how we can improve it to $O(n \log n)$

 • Overview of recursive *merge sort* algorithm
Review: Binary Search

- **Binary search**: recursive search algorithm to search in a *sorted array*
 - Similar to how we search for a word in a (physical) dictionary
 - Takes $O(\log n)$ time
- Much more efficient than a *linear search*
 - **Note**: $\log n$ grows much more slowly compared to n as n gets large
Review: Binary Search

- Base cases? When are we done?
 - If list is too small (or empty) to continue searching
 - If item we’re searching for is the middle element

```python
def binarySearch(aList, item):
    """Assume aList is sorted.
    If item is in aList, return True;
    else return False.""
    n = len(aList)
    mid = n // 2
    # base case 1
    if n == 0:
        return False

    # base case 2
    elif item == aList[mid]:
        return True
```

Check middle

\[\text{mid} = \frac{n}{2} \]
Review: Binary Search

- Recursive case:
 - Recurse on left side if item is smaller than middle
 - Recurse on right side if item is larger than middle

$\text{mid} = \lfloor n/2 \rfloor$

If item $< L[\text{mid}]$, then need to search in $L[:\text{mid}]$
Review: Binary Search

- Recursive case:
 - Recurse on left side if item is smaller than middle
 - Recurse on right side if item is larger than middle

If item > L[mid], then need to search in L[mid+1:]
def binarySearch(aList, item):

 n = len(aList)
 mid = n // 2

 # base case 1
 if n == 0:
 return False

 # base case 2
 elif item == aList[mid]:
 return True

 # recurse on left
 elif item < aList[mid]:
 return binarySearch(aList[:mid], item)

 # recurse on right
 else:
 return binarySearch(aList[mid + 1:], item)
Analysis of Binary Search

• Within a recursive call:
 • Constant number of steps (independent of \(n \)): just 1 comparison
 • Therefore total number of steps: \(O(\# \text{ of recursive calls}) \)
• Size of list gets cut in half in each recursive call:
 \[n \rightarrow n/2 \rightarrow n/4 \rightarrow n/8 \rightarrow \cdots \rightarrow n/2^i = 1 \]
• This is an \(O(\log n) \) time
• Really small even for large \(n \!

\[\log_2 (1 \text{ billion}) \approx 30 \]
Sorting
Sorting

- **Problem:** Given a sequence of unordered elements, we need to sort the elements in ascending order.
- There are many ways to solve this problem!
- Built-in sorting functions/methods in Python
 - `sorted()`: returns new sorted list
 - `sort()`: *destructive* sort that sorts the list its called on
- **Today:** how do we design our own sorting algorithm?
- **Question:** What is the best (most efficient) way to sort n items?
- We will use Big-Oh to find out!
Selection Sort

- A possible approach to sorting elements in a list/array:
 - Find the smallest element and move (swap) it to the first position
 - Repeat: find the second-smallest element and move it to the second position, and so on
Selection Sort

• A possible approach to sorting elements in a list/array:
 • Find the smallest element and move (swap) it to the first position
 • Repeat: find the second-smallest element and move it to the second position, and so on
Selection Sort

- A possible approach to sorting elements in a list/array:
 - Find the smallest element and move (swap) it to the first position
 - Repeat: find the second-smallest element and move it to the second position, and so on
Selection Sort

- Find the smallest element and move it to the first position and repeat
Selection Sort

• Find the smallest element and move it to the first position and repeat
Selection Sort

- Find the smallest element and move it to the first position and repeat
Selection Sort

• Find the smallest element and move it to the first position and repeat
Selection Sort

- Find the smallest element and move it to the first position and repeat
Selection Sort

- Find the smallest element and move it to the first position and repeat.
Selection Sort

- Find the smallest element and move it to the first position and repeat.
Selection Sort

- Find the smallest element and move it to the first position and repeat
Selection Sort

- Generalize: For each index i in the list L, we need to find the min item in $L[i+1:]$ so we can replace $L[i]$ with that item.

- In fact we need to find the position minIndex of the item that is minimum in $L[i+1:]$.

- **Reminder:** how to swap values of variables a and b?
 - Using tuple assignment in Python: $a, b = b, a$
 - Or using a temp variable: $\text{temp} = a; a = b; b = \text{temp}$

- Let's implement this algorithm!
Selection Sort Code

```python
In [3]: def selectionSort(myList):
    """Selection sort of given list myList, 
    mutates list and sorts using selection sort.""
    # find size
    n = len(myList)

    # traverse through all elements
    for i in range(n):
        # find min element in remaining unsorted list
        minIndex = i
        for j in range(i + 1, n):
            if myList[minIndex] > myList[j]:
                minIndex = j

        # swap min el with ith el
        myList[i], myList[minIndex] = myList[minIndex], myList[i]

In [6]: myList = [12, 2, 9, 4, 11, 3, 1, 7, 14, 5, 13]
selectionSort(myList)
myList

Out[6]: [1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14]
```
Selection Sort Analysis

- For $i = 0$, inner loop runs $n - 1$ times
- For $i = 1$, inner loop runs $n - 2$ times
- ...
- For $i = n - 1$, inner loop runs 0 times

```python
# traverse through all elements
for i in range(n):
    # find min element in remaining unsorted list
    minIndex = i
    for j in range(i + 1, n):
        if myList[minIndex] > myList[j]:
            minIndex = j

    # swap min el with ith el
    myList[i], myList[minIndex] = myList[minIndex], myList[i]
```
Selection Sort Analysis

• Within the inner loop we have \(O(1)\) steps - 1 comparison (constant)

• Thus overall number of steps is sum of inner loop steps

\[(n - 1) + (n - 2) + \cdots + 0 \leq n + (n - 1) + (n - 2) + \cdots + 1\]

• What is this sum?

```python
# traverse through all elements
for i in range(n):
    # find min element in remaining unsorted list
    minIndex = i
    for j in range(i + 1, n):
        if myList[minIndex] > myList[j]:
            minIndex = j

    # swap min el with ith el
    myList[i], myList[minIndex] = myList[minIndex], myList[i]
```
Selection Sort Analysis

\[n + (n-1) + \ldots + 2 + 1 = \frac{n(n+1)}{2} \]
Selection Sort Analysis

\[S = n + (n - 1) + (n - 2) + \cdots + 2 + 1 \]
\[+ \quad S = 1 + 2 + \cdots + (n - 2) + (n - 1) + n \]

\[2S = (n + 1) + (n + 1) + \cdots + (n + 1) + (n + 1) + (n + 1) \]
\[2S = (n + 1) \cdot n \]
\[S = (n + 1) \cdot n \cdot 1/2 \]

- Total number of steps taken by selection sort is thus:
 - \(O(n(n + 1)/2) = O(n(n + 1)) = O(n^2 + n) = O(n^2) \)
Towards an $O(n \log n)$ Algorithm

• Many other natural sorting algorithms that compare and rearrange elements in a slightly different way, but they are still $O(n^2)$ steps

 • Intuitively, any algorithm that takes k steps to move each item k positions to its final position will take at least $O(n^2)$ steps as every element can be $O(n)$ away from its position in the worst case.

 • To do better than much better than n^2, we need to be able to move an item to its final position in significantly less steps

• Turns out we can sort in $O(n \log n)$ time if we are bit more clever, which is the best possible: **Merge sort algorithm** (Invented by John von Neumann in 1945)
Merge Sort: Idea

- If we split the list in half, sorting the left and right half are smaller versions of the same problem.

- **Algorithm:**
 - **(Divide)** Recursively sort left and right half.
 - **(Conquer)** Merge the sorted halves into a single sorted list.

- How efficiently can we merge two sorted lists?

```
L
m = n // 2
n = len(L)
```

<table>
<thead>
<tr>
<th>0</th>
<th>12</th>
<th>2</th>
<th>9</th>
<th>4</th>
<th>11</th>
<th>3</th>
<th>1</th>
<th>7</th>
<th>14</th>
<th>5</th>
<th>13</th>
</tr>
</thead>
</table>
Merging Sorted Lists

- **Problem.** Given two sorted lists \(a\) and \(b\), how quickly can we merge them into a single sorted list?

\[
\begin{align*}
a & : 2 \ 4 \ 9 \ 11 \ 12 \\
b & : 1 \ 3 \ 5 \ 7 \ 13 \ 14 \\
\end{align*}
\]
Merging Sorted Lists

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Merging Sorted Lists

Is \(a[i] \leq b[j] \) ?
- Yes, \(a[i] \) appended to \(c \)
- No, \(b[j] \) appended to \(c \)
Merging Sorted Lists

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c

![Diagram showing merging of sorted lists](image-url)
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>
```

merged list c
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Merging Sorted Lists

Is \(a[i] \leq b[j] \) ?

- Yes, \(a[i] \) appended to \(c \)
- No, \(b[j] \) appended to \(c \)

\[
\begin{array}{ccccccc}
2 & 4 & 9 & 11 & 12 & & \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 3 & 5 & 7 & 13 & 14 & & \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 7 & 9 & 11 & 12 & 13 & 14 & \text{merged list } c
\end{array}
\]
Walk through lists \(a, b, c\) maintaining current position of indices \(i, j, k\)

- Compare \(a[i]\) and \(b[j]\), whichever is smaller gets put in the spot of \(c[k]\)

- Merging two sorted lists into one is an \(O(n)\) step algorithm!

- Can use this merge procedure to design our recursive merge sort algorithm!

```python
def merge(a, b):
    """Merges two sorted lists a and b, and returns new merged list c""
    # initialize variables
    i, j, k = 0, 0, 0
    lenA, lenB = len(a), len(b)
    c = []

    # traverse and populate new list
    while i < lenA and j < lenB:
        if a[i] <= b[j]:
            c.append(a[i])
            i += 1
        else:
            c.append(b[j])
            j += 1

    # handle remaining values
    if i < lenA:
        c.extend(a[i:])
    elif j < lenB:
        c.extend(b[j:])

    return c
```
Merge Sort Algorithm

- **Base case:** If list is empty or contains a single element: it is already sorted

- **Recursive case:**
 - Recursively sort left and right halves
 - Merge the sorted lists into a single list and return it

- **Question:**
 - Where is the sorting actually taking place?

```python
def mergeSort(L):
    """Given a list L, returns a new list that is L sorted in ascending order.""
    n = len(L)

    # base case
    if n == 0 or n == 1:
        return L

    else:
        m = n//2 # middle

        # recurse on left & right half
        sortLt = mergeSort(L[:m])
        sortRt = mergeSort(L[m:])

        # return merged list
        return merge(sortLt, sortRt)
```
Merge Sort Example
Merge Sort Example

```
12 2
9 4 11
3 1 7
14 5 13

2 12
4 9 11
1 3 7
5 13 14

2 4 9 11 12
1 3 5 7 13 14

1 2 3 4 5 7 9 11 12 13 14
```
Selection vs Merge Sort in Practice

- Selection sort is $O(n^2)$ and merge sort is $O(n \log n)$ time
- But, how different is the performance of each in practice?
- Example: `wordList` is 12,000 words in the book *Pride & Prejudice*
- `miniList` and `medList` are the first 500 and 7000 words respectively

```python
In [21]:
wordList = []
with open('prideandprejudice.txt') as book:
    for line in book:
        line = line.strip().split()
        wordList.extend(line)
print(len(wordList))
122089

In [25]:
miniList = wordList[:500]
medList = wordList[:7000]
```
Selection vs Merge Sort in Practice

- miniList: 500 words
- medList: 7000 words
- wordList: ~12000 words

In [35]: timedSorting(miniList)
Selection sort takes {} secs 0.016601085662841797
Merge sort takes {} secs 0.0012111663818359375

In [36]: timedSorting(medList)
Selection sort takes {} secs 1.614171028137207
Merge sort takes {} secs 0.014803886413574219

In [37]: timedSorting(wordList)
Selection sort takes {} secs 590.5920398235321
Merge sort takes {} secs 0.39650511741638184

~10 mins vs 1/3 sec!
Summary: Searching and Sorting

- We have seen algorithms that are
 - $O(\log n)$: binary search in a sorted list
 - $O(n)$: linear searching in an unsorted list
 - $O(n \log n)$: merge sort
 - $O(n^2)$: selection sort
- Important to think about efficiency when writing code!
- More about this in CS136!
Acknowledgement

These slides have been adapted from: