Learning Objectives
Students will be able to:

Content:
- Define a list
- Identify elements of a list
- Explain the purpose of positive and negative indexes in a list.
- Explain how to access individual elements of a list
- Explain how following list functions: append(), insert(), remove(), count(), index()
- Explain how to replace an item

Process:
- Write code that prints a list
- Write code that edits a list – add, remove, and insert items

Prior Knowledge
- Python concepts from Activities 1-14

Critical Thinking Questions:

FYI: A sequence is an object that stores multiple data items in a contiguous manner. Two types of sequences are strings and lists. Each value stored in a list is called an element.

1. Examine the sample lists below.

<table>
<thead>
<tr>
<th>Sample Lists in Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>digits = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]</td>
</tr>
<tr>
<td>fruits = ["apple", "banana", "cantalope", "pear", "orange"]</td>
</tr>
<tr>
<td>studentData = ["Jones", 10234, 3.5, "Brown", 23145, 2.8]</td>
</tr>
</tbody>
</table>

 a. How many elements does the list named digits contain? ____________________________

 b. What type of data is stored in each list (String, numeric)?
 - digits list: ____________________________
 - fruits list: ____________________________
 - studentData list: ____________________________

 c. How would you define a list? ____________________________

2. The second line of code in the following program prints the first element in the digits list.

```python
fruits = ["apple", "banana", "cantalope", "pear"]
print(fruits[0])
```
a. What value in the list does `fruits[3]` represent?

b. Write a line of code that prints the last value. (We’ll type this up as a class)

c. Edit your print statement in ‘b’ so that it prints `fruits[4]`. What will be printed? Why?

d. Edit your print statement so that it prints `fruits[-1]`. What will be printed?

e. As a class: Change -1 to -2 in “d.” What is printed?

FYI: The number used to locate an element in the list is called an index.

f. Explain how the positive and negative indexes locate specific elements.

g. What is printed with the following print statement: `print(fruits)`? How is the information displayed?

3. Enter and execute the following code:

```python
gradebook = ["Abbott", 78, 89, "Barrava", 97, 86]

print(gradebook)
for x in gradebook:
    print(x, end = " ")
print()
```

a. What is the output for the second line of code: `print(gradebook)`

b. Examine the following code. It contains a FOR loop but does not use the `range()` function. In previous FOR loops the values resulting from the `range()` function were stored in `x` during each iteration of the loop.

```python
for x in gradebook:
    print(x, end = " ")
print()
```

i. What is being stored in `x` for each iteration of the loop?

ii. What is the output for this code?
c. What are the similarities and differences between the output for “a.” and “b.”?

d. Add each of the following print statements to the code above. What is the output for each statement? Explain the output.

```
print((gradebook[1] + gradebook[2])/2)
print(gradebook[0] + gradebook[3])
print(gradebook[2] + gradebook[3])
```


4. Enter and execute the following code:
```
flowers = ['rose', 'peony', 'tulip', 'daffodil', 'carnation', 'daisy']
print(flowers)
flowers.append('gardenia')
print(flowers)
```

a. Explain what the following line of code does: `flowers.append('gardenia')`

b. Write a line of code that would add the flower `lavender` to the list.

5. Enter and execute the following code
```
flowers = ['rose', 'peony', 'tulip', 'daffodil', 'carnation', 'daisy']
print(flowers)
flowers.insert(2,'lily')
print(flowers)
```

a. Explain what the following line of code does: `flowers.insert(2, 'lily')`

b. Write a line of code that would place the flower: **sunflower** at the beginning of the list.

6. Enter and execute the following code:

   ```python
   flowers = ['rose', 'peony', 'tulip', 'daffodil', 'carnation', 'daisy']
   print(flowers)
   del flowers[2]
   print(flowers)
   ```

 a. Explain what the following line of code does: `del flowers[2]`

 b. Write a line of code that would delete the last flower in the list.

7. Enter and execute the following code:

   ```python
   flowers = ['rose', 'peony', 'tulip', 'daffodil', 'carnation', 'daisy']
   print(flowers)
   flowers.remove('tulip')
   print(flowers)
   ```

 a. Explain what the following line of code does: `flowers.remove('tulip')`

 b. Write a line of code that would delete ‘daffodil’ from the list.

 c. Edit the code to determine what happens if the same flower appears in the list twice and use the `remove()` function to remove the word. Does it remove both instances of the word?

 d. Write a line of code that attempts to remove the flower: **sweet pea**. What happens when the code is executed?
8. Enter and execute the following code:
```
flowers = ['rose', 'peony', 'tulip', 'daffodil', 'carnation', 'daisy']

print(flowers)
flowers[1] = 'freesia'
print(flowers)
```

a. Explain what the following line of code does: `flowers[1] = 'freesia'`

b. Write a line of code that would replace ‘daffodil’ with ‘gardenia’.

c. Explain what the following line of code does: `flowers[-3] = 'lily'`

d. Explain what happens when `flowers[8] = 'lily'` is added to the program:

9. Enter and execute the following code:
```
ballot = ['y', 'y', 'n', 'y', 'n', 'y', 'y', 'n',
          'y', 'n', 'y', 'n', 'y', 'n', 'y', 'y', 'y']

numY = ballot.count('y')
numN = ballot.count('n')

print("Number of YES votes:", numY)
print("Number of NO votes: ", numN)

if numY > numN:
    print("The ballot was approved.")
else:
    print("The ballot was not approved.")
```

a. What is the output of this program?

b. Explain the line of code: `numY = ballot.count('y')` What does the `count()` function do?
Application Questions: Use the Python Interpreter to check your work

1. Create a program that prints a given list, prompts the user for a name and average, adds the new information to the list and prints the new list. You can use the `len()` function with the name of the list as an argument to determine the length of the list. It should produce output similar to the following:

   ```python
   LIST: ['Mary Smith', 132, 'Jean Jones', 156, 'Karen Karter', 167]
   Name to add to the list: Ann Kert
   Average: 189
   There are now 6 items in the list.
   ```

2. Revise the previous program so that it allows the user to enter the name of a person in the list whose average needs updating and also prompts the user for the new average. The program should then update the list and print the new list. Place the additional code below. The program should produce output similar to the following:

   ```python
   LIST: ['Mary Smith', 132, 'Jean Jones', 156, 'Karen Karter', 167]
   Name to add to the list: Ann Kert
   Average: 189
   There are now 6 items in the list.
   Name of person whose average needs updating: Karen Karter
   New Average: 170
   ```