
Computer Science 134C

Introduction to Computer Science, in Python

Lecture #12 (Generators)
October 3, 2018

Keywords

�bonacci, exception, for loop,

generator, next, primes, try-except

We learn how to generate values on demand.

1. Homework out: this homework is due on Wednesday.

2. Questions?

3. A generator is an object that constructs a (possibly in�nite) stream of values on demand .

(a) Whenever we write a function that mentions the yield keyword, the result of the function,

when called, is a generator .

def countTo(n):

i = 1

while i <= n:

yield i

i += 1

(b) The generator object, g, can be asked to compute and return the next value in the sequence

by calling next(g). This causes the generator to execute the function until a value is returned

with yield:

>>> g = countTo(3)

>>> print(next(g))

1

>>> print(next(g))

2

>>> print(next(g))

3

>>> print(next(g))

Traceback (most recent call last):

File ‘‘<stdin>’’, line 1, in <module>

StopIteration

If you call next to get a value from a generator that has run dry, it raises a StopIteration

exception.

(c) This exception could be caught with a try-except statement, but a more e�cient mechanism

is to use a for loop:

>>> for v in countTo(10):

>>> print(v)

1

2

3



(d) Generators have the potential to generate an in�nite number of values:

def count(start = 0, step = 1):

i = start

while True:

yield i

i += step

(e) How would you generate all the Fibonacci numbers? Assume the �rst two are 1.

(f) How would you generate all prime numbers?

(g) How would compute the orbit of a function f on a value n? As an example, can you compute

f as the product of digits of a value.

?


