Computer Science 134C
Introduction to Computer Science, in Python

Lecture #12 (Generators)
October 3, 2018

Keywords
fibonacci, exception, for loop,
generator, next, primes, try-except

We learn how to generate values on demand.

1. Homework out: this homework is due on Wednesday.
2. Questions?
3. A generator is an object that constructs a (possibly infinite) stream of values on demand.

(a) Whenever we write a function that mentions the yield keyword, the result of the function,
when called, is a generator.

def countTo(n):
i=1
while 1 <= n:
yield i
i+=1
(b) The generator object, g, can be asked to compute and return the next value in the sequence

by calling next (g). This causes the generator to execute the function until a value is returned
with yield:

>>> g = countTo(3)

>>> print(next(g))

1

>>> print(next(g))

2

>>> print(next(g))

3

>>> print(next(g))

Traceback (most recent call last):
File ‘‘<stdin>’’, line 1, in <module>

Stoplteration

If you call next to get a value from a generator that has run dry, it raises a StopIteration
exception.

(c) This exception could be caught with a try-except statement, but a more efficient mechanism
is to use a for loop:

>>> for v in countTo(10):
>>> print (v)

1

2

3



(d) Generators have the potential to generate an infinite number of values:

def count(start = 0, step = 1):
i = start
while True:
yield i
i += step

(e) How would you generate all the Fibonacci numbers? Assume the first two are 1.
(f) How would you generate all prime numbers?

(g) How would compute the orbit of a function f on a value n? As an example, can you compute
f as the product of digits of a value.



