
Computer Science CS134C (Fall 2018)

Duane A. Bailey

Laboratory 8

Setting Precedent in the Supreme Court (Due Thursday/Friday)

Objective. To experiment with sorting in Python.

This week, we'll look at one of the most carefully curated social networks|the network of Supreme

Court majority decisions. In this network, the majority decision of a case is founded in the law by citing

past decisions. Past decisions establish precedent by being cited by later cases.

A similar network is the network of academic publications. Publications cite prior work to establish

legitimacy, and older publications become in
uential when they're cited by future work.

In academic circles, an author's in
uence can be estimated by academic impact scores . In this lab

we'll attempt to apply academic impact scores to dockets of Supreme Court decisions.1

Background: The h-Index

A commonly used metric for determining the impact of authors is the h-index . The index is computed

by counting the number of times each of the author's papers have been cited. Suppose Rita DeCoder has

has written ten papers. Her list of citation counts might look something like this:

[0, 2, 15, 9, 7, 48, 4, 82, 14, 6]

Rita's �rst paper has been cited zero times, her second paper has been cited twice, etc. Rita's h-index is

the maximum n where her top n papers have been cited at least n times . Looking at Rita's citation

counts we see that her top 6 papers have been cited at least 6 times.

The process is more obvious when you sort the citation count list in descending order:

[82, 48, 15, 14, 9, 7, 6, 3, 2, 0]

It's easy to see that the �rst six elements are greater than or equal to 6, but the 7th is less than 7. We'll

leave it to you to determine the relationship between the values of the list and their list indices . Authors

with a high h-index have written many highly-cited papers and, over time, their impact score may improve

as more and more people cite their works.

It may now be clear that we have to use Python's sorting methods. Python's main workhorse for

sorting is a builtin procedure, sorted(i), that takes an iterable (e.g. a tuple, list, set, or range, etc.),

i, and returns a fresh list of values in their natural ascending order. For example, the set of tuples

>>> i = {(1,’one’), (7,’seven’), (5,’five’), (7,’magic’), (3, ’magic’)}

>>> sorted(i)

would naturally be ordered by tuple comparison:2

[(1,’one’), (3,’magic’), (5,’five’), (7,’magic’), (7,’seven’)]

Of course, you might chose to sort this same set by just the second component of each tuple. You can

accomplish this by providing a function, second, that, given a tuple called pair, returns the actual key

to be used for comparison:

1Thanks to Peter Tianlun Zhang for performing this initial research and to Carl Rustad for developing this lab.
2Recall that tuple a is less than b if in the �rst component that di�ers, a's component is less than b's.

>>> def second(pair):

... return pair[1]

...

>>> sorted(i,key=second)

[(5,’five’), (7,’magic’), (3, ’magic’), (1,’one’), (7,’seven’)]

Notice the relative positions of the two ’magic’ pairs. These two values have no reason to be swapped.

We say that a sort is stable if values exchange places only if it's required by comparison. By the way, if

we have a simple function like second, it's often easier to specify it as a lambda :

>>> sorted(t,key=lambda pair : pair[1])

[(5,’five’), (7,’magic’), (3, ’magic’), (1,’one’), (7,’seven’)]

Only mutable order-preserving classes, like lists, can be sorted in place using the dedicated method,

sort. Immutable objects, str, cannot be modi�ed, so it is meaningless to support in-place sorting.

First steps.

Before you begin, you will need to clone your lab8 repository. Assuming your username is 22xyz9, type:

git clone ssh://22xyz9@davey.cs.williams.edu/~cs134/22xyz9/lab8.git ~/cs134/lab8

We hope to plot data, so you will also have to activate your virtual environment:

-> cd ~/cs134

-> source bin/activate

(cs134) -> cd lab8

You will �nd several CSV �les in the lab folder. The primary data you will be using comes from Fowler

and Jeon's interesting analysis of the 30,288 majority US Supreme Court decisions on dockets through

2002.3 The raw data used for their work is found in judicial.csv. Each row in this �le corresponds to

a majority decision of the U.S. Supreme Court. There are many di�erent columns in this �le, but we are

primarliy interested in are caseid (column 0), year (column 3), and indeg (column 8). The caseid is a

serial number the authors have given to each case in the order they were decided. The indeg �eld is the

number of later Supreme Court decisions that cite that particular case; we will refer to this statistic as the

citation count for a decision. The year �eld is the date of the decision. This information is su�cient to

compute an impact score for each year|each docket|of decisions made by the Supreme Court.

For those seeking to investigate the citation network more deeply, the �le allcites.csv is a �le with

two columns of numbers: the left column is a case identi�er for a decision making a citation, and the right

column is the case cited.

In chiefJustices.csv we've listed all the chief justices along with the start and end year of each

justice's term. This �le may also be helpful in deeper investigations.

3J. H. Fowler, S. Jeon, \The authority of Supreme Court precedent", Social Networks , 30(1), January 2008, pp. 16-30.

See also fowler.ucsd.edu/judicial.htm.

Required tasks.

In the python �le lab8.py, you will �nd a number of incomplete methods that we expect you to �nish.

We suggest the following approach:

1. readDecisions(filename). This is a function that reads the CSV data found in the indicated �le

(typically, "judicial.csv") and returns a decisions dictionary summarizing each year's cases. This

decisions dictionary maps a year to a tuple of citation counts for each majority decision, in decision

order, made during that year. Using a tuple makes it di�cult to accidentally modify this important

data. There are 235 di�erent years that appear in the Fowler database.

2. hIndex(i). This function computes the integer h-index for a (�nite) iterable collection of integer

citation counts. Here are some important examples:

>>> hIndex([])

0

>>> hIndex((0, 0))

0

>>> hIndex({1, 2, 3})

2

>>> hIndex([0, 2, 15, 9, 7, 48, 4, 82, 14, 6])

6

3. docketImpacts(decisions). This function constructs an ordered list of pairs of the form (year,

h-index) that contains the h-index for every year in the decisions dictionary. Make sure that the

list is sorted in increasing order by year. The h-indices associated with the years 1800, 1900, and

2000 are 3, 22, and 2, respectively.

4. plotImpacts(impacts,plotfilename). This procedure plots the h-index for each year in chrono-

logical order (please use line-style plotting to suggest trends). Remember to activate your Python

environment before using matplotlib. Your independent variable will be the year and the dependent

variable will be the h-index. Please label your axes and add a descriptive title.

The work above is su�cient to get a good grade. When you complete your work, please add, commit, and

push it to the server.

Pushing forward.

If you'd like to push this analysis a little bit further, you might consider one or more of the following

possibilities. To ensure we understand what you have done, make sure that you fully document your

e�orts and add/commit/push any new �les you create to the repository.

? Implement an immutable SCOTUS class, described in a �le scotus.py. It imports and uses the

functions and procedures of lab8 to support helper and accessor methods in the SCOTUS class. A

typical use of this class might be:

>>> db = SCOTUS("judicial.csv")

>>> db._hIndex([4,4,4])

3

>>> db.impact(1900)

22

>>> db.plotImpacts("judicial.pdf")

? Determining impacts of speci�c courts. As mentioned above, the CSV �le chiefJustices lists the

terms of all the Chief Justices of the United States. Because these powerful justices determine the

cases to be heard, they often determine the \personality" of the court. Thus, for example, the Rehn-

quist Court was a conservative course that spanned the years 1986 through 2005. For the purposes

of this assignment, let's consider a majority decision to be part of the a particular justice's court if it

was decided in a year of their term. Write a Python procedure, courtInfluence(decisions) that

reads the terms of each chief justice and computes the impact of each of their court's decisions found

in the decisions dictionary, decisions. The procedure sorts and prints the names of the courts and

their h-index in decreasing order of impact.

? Evaluation the foundation of decisions in law. We used the data column indeg to determine how

many cases a particular Supreme Court case was cited by. If you'd like to extend the lab, include

a plot of \foundational" h-indices computed using the data from outdeg. This measures how many

cases are referenced by the case in question. The h-indices made with this data give us an idea of how

frequently the court made use of previous rulings each year. Courts that practice judicial activism ,

of course, make fewer references to prior law in their decision making and, as a result, might lead to

lower foundational h-index scores. Notice that scores based on out-degree don't change over time.

We would be very impressed with any of these extensions to the basic lab. Any of this work would be an

important extension to Fowler and Jeon's basic investigation!

?

