CS134 Lecture 31:
Measuring Efficiency
Announcements & Logistics

• **HW 10** will be released today, due Mon @ 10 pm

 • Last HW

• **Lab 9 Boggle (Parts 1 & 2)** due Wed/Thurs at 10 pm

 • Make sure your completed game satisfies all of the expected behavior mentioned in handout

 • Test your game thoroughly!

 • Not just "normal game behavior"

 • Stress test it with unexpected clicks, etc

• CS134 Scheduled Final: **Friday, May 17, 9:30 AM**

Do You Have Any Questions?
Last Time: Linked Lists

- Learned about linked lists
- Did a mix of list special methods using recursion and loops
 - Many more methods are possible: see code on course schedule
Today and Next Week

• Start discussing efficiency trade-offs surrounding certain operations, such as append and prepend, to a data type such as Linked List

• Introduce how we measure efficiency in Computer Science

• Discuss efficiency of some classic algorithms
 • Linear search
 • Binary search
Linked List Efficiency

• How can we compare the efficiency of the following LinkedList operations?
 • append an item at the end of a LinkedList
 • prepend an item to the beginning of a LinkedList
• Any thoughts on which is "faster" (without defining efficiency formally)
 • append needs to traverse the entire list to find last item
 • "number of steps" proportional to number of items
 • prepend just needs to change self._rest of newly inserted item
 • this is independent of how many items are in the LinkedList
• This is intuitively why append is more efficient than prepend
• For more formal discussion: need to figure out what we want to measure
Measuring Efficiency
Measuring Efficiency

• How do we measure the efficiency of our program?
 • We want programs that run "fast"
 • How should we measure this?

• One idea: use a stopwatch to see how long it takes
 • Reasonable proxy
 • But, what is it really measuring?

• Suppose I run the same program on a really slow/old computer vs a really powerful supercomputer
 • Stopwatch will measure different times!
 • Are we measuring how fast our program is or how fast the computer executes it?
Measuring Efficiency

• How do we measure the efficiency of our program?
 • We want programs that run "fast"
 • How should we measure this?

• One idea: use a stopwatch to see how long it takes
 • Measures how long a piece of code takes on this machine on this particular input
 • Machine (and input) dependent

• We want to isolate our program’s efficiency
 • How well does it scale to larger inputs?
 • How does it compare to other solutions to the same problem: which one is better?
Efficiency Metric: Goals

We want a method to evaluate efficiency that:

• **Is machine and language independent**
 • Analyze the *algorithm* (problem-solving approach)

• **Provides guarantees that hold for different types of inputs**
 • Some inputs may be "easy" to work with while others are not

• **Captures the dependence on input size**
 • Determine how the performance "scales" when the input gets bigger

• **Captures the right level of specificity**
 • We don't want to be too specific (cumbersome)
 • Measure things that matter, ignore what doesn't
Platform/Language Independent

Machine and language independence

- We want to evaluate how good the algorithm is, rather than how good the machine or implementation is.
- Basic idea: Count the **number of steps** taken by the algorithm.
- Sometimes referred to as the "running time".
Worst-Case Analysis

• We can't just analyze our algorithm on a few inputs and declare victory. Which of the following is the scenario we should be measuring?

• **Best case.** Minimum number of steps taken over all possible inputs of a given size

• **Average case.** Average number of steps taken over all possible inputs of a given size

• **Worst case.** Maximum number of steps taken over all possible inputs of a given size.

• Benefits of worst case analysis:

 • Regardless of input size, we can conclude that the algorithm always does *at least as well as* the pessimistic analysis
Dependence on Input Size

• We generally don't care about performance on "small inputs"
• Instead we care about "the rate at which the completion time grows" with respect to the input size
• For example, consider the area of a square or circle: while the formula for each is different, they both grow at the same rate wrt radius
 • doubling radius increases area by 4x, tripling increases by 9x

Doubling r increases area $4\times$. Tripling r increases area $9\times$.

Doubling r increases area $4\times$. Tripling r increases area $9\times$.
Dependence on Input Size: Big-O

- Big-O notation in Computer Science is a way of quantifying (in fact, upper bounding) the growth rate of algorithms/functions wrt input size.
- For example:
 - A square of side length r has area $O(r^2)$.
 - A circle of radius r has area $O(r^2)$.

Doubling r increases area $4 \times$. Tripling r increases area $9 \times$.
Dependence on Input Size: Big-O

- Big-O notation captures the rate at which the number of steps taken by the algorithm grows wrt size of input n, "as n gets large"

- Not precise by design, it ignores information about:
 - Constants (that do not depend on input size n), e.g. $100n = O(n)$
 - Lower-order terms: terms that contribute to the growth but are not dominant: $O(n^2 + n + 10) = O(n^2)$

- Powerful tool for predicting performance behavior: focuses on what matters, ignores the rest

- Separates fundamental improvements from smaller optimizations

- Won't study this notion too formally: covered in CS136 and CS256!
Append vs Prepend: Big Oh

• Let's revisit append vs prepend efficiency

• How does the cost of append grow with number of items in LinkedList?
 • Need to traverse \(\text{len(LinkedList)} \) items at least
 • Grows linearly with input size

• How does the cost of prepend grow with number of items in LinkedList?
 • Independent of input size!
 • We call this \(O(1) \) or constant time:
 • Essentially saying does not grow as input size gets large
Lists (Arrays) vs. Linked Lists

Efficiency Trade Offs
Lists vs Linked Lists

- **Linked Lists**: “pointer-based” data structure, items need not be contiguous in memory

- **Arrays**: index-based data structure items are always stored contiguously in memory (think of a Python built-in list as an array)
Lists vs Linked Lists

- **Linked Lists**: Can grow and shrink on the fly: do not need to know size at the time of creation (therefore no wasted space!)

- **Arrays**: index-based data structure items are always stored contiguously in memory (think of a Python built-in list as an array)
Array vs Linked Lists

- Inserts at the beginning: which one is better?
Array vs Linked Lists

- Linked list steps:
 - Point front to new element
 - Point rest of new element to old list
 - These steps don't depend on size of list
 - Therefore, run-time is constant, that is, $O(1)$ time
Array vs Linked Lists

• Now consider an array-based list

• To insert at index 0, we need to shift every element over by one spot
 • This takes time proportional to the size: linear time or \(O(n) \)

• So when are arrays more efficient?
 • When **indexing** elements: they give **direct access** \(O(1) \)
 • Linked list: we need to traverse the list to get to the element \(O(n) \)
So Which is Better?

- It depends!
- Think about what operations are a priority in your program!
 - We should choose the way to represent/organize our data according to how we plan to use the data
- Let's take an example of an application where one of the data structures is way more efficient than the other
Searching in a Sequence
Search

- **Search.** Given an input sequence *seq*, search if a given *item* is in the sequence.
 - For example, if a name is in a sequence of student names
- **Input:** a sequence of *n* items and a query item
 - For now suppose this can be in *any order*
- **Output:** True if query item is in sequence, else False
- Can use *in* operator to do this (calls *__contains__*).
 - But without knowing how it works, can't analyze efficiency
- Let's figure out a direct way to solve this problem
Searching in a Sequence

- First algorithm: iterate through the items in sequence and compare each item to query

```python
def linear_search(item, seq):
    for elem in seq:
        if elem == item:
            return True
    return False
```

Might return early if item is first elem in seq, but we are interested in the **worst case analysis**; this happens if item is not in seq at all.
Searching in a Sequence

- In the worst case, we have to walk through the entire sequence.
- Overall, the number of steps is linear in \(n \): we write \(O(n) \) in Big Oh.

```python
def linear_search(item, seq):
    for elem in seq:
        if elem == item:
            return True
    return False
```

Loop runs \(n \) items in worst case.

One equality check per iteration: assume comparing `elem == item` is one step.

8 5 3 11 ...
0 1 2 3
Searching in an Array

• Can we do better?
 • Not if the elements are in arbitrary order
• What if the sequence is *sorted*?
 • Can we utilize this somehow and search more efficiently?

How do we search for an item (say 10) in a *sorted* array?
Let’s Play a Game

• I’m thinking of a number between 0 and 100…
• If you guess a number, I’ll tell you either:
 • You’ve guessed my number!
 • My number is larger than your guess
 • My number is smaller than your guess
• What is your guessing strategy?

• What if I picked a number between 0 and 1 million?
Example: Dictionary

• How do we look up a word in a (physical) dictionary?
• Words are listed in alphabetical order
Example: Dictionary

Finding the definition of "octopus"

Open pages at ~half, is word on left or right?

Octopus

Find the word!

Octa Octo

Open pages at ~half, is word on left or right?

OcOd

Open pages at ~half, is word on left or right?

Occ Oct
How Good is This Method?

• **Goal:** Analyze # pages we need to look at until we find the word

• We want the worst case: possible to get lucky and find the word right on the middle page, but we don't want to consider luck!

• Each time we look at the “middle” of the remaining pages, the number of pages we need to look at is divided by 2

• A 1024-page dictionary requires at most 11 lookups: 1024 pages, < 512, <256, <128, <64, <32, <16, <8, <4, <2, <1 page.

• Only needed to look at 11 pages out of 1024!

• **Challenge:** What if we have an *n* page dictionary, what function of *n* characterizes the (worst-case) number of lookups?
Logarithms: our favorite function

- Logarithms are the inverse function to exponentiation
- \(\log_2 n \) describes the exponent to which 2 must be raised to produce \(n \)
- That is, \(2^{\log_2 n} = n \)
- Alternatively:
 - \(\log_2 n \) (essentially) describes the number of times \(n \) must be divided by 2 to reduce it to 1 or below
- For us, here’s the important takeaway:
 - How many times can we divide \(n \) by 2 until we get down to 1
 - \(\approx \log_2 n \)
O(log \(n\))

- When you double the number of elements, it only increases the number of operations by 1
 - 2 items in the list, 1 operation
 - \(\log 2 = 1\)
 - When you have 4 items, increases operations to 2
 - \(\log 4 = 2\)
 - When you have 8 items, only 3 operations
 - \(\log 8 = 3\)
Binary Search

• The recursive search algorithm we described to search in a sorted array is called binary search

• It can be much more efficient than a linear search
 • Takes $\approx \log n$ lookups if we can index into sequence efficiently

• Which data structure supports fast access/indexing?
 • Accessing an item at index i in an array requires constant time
 • Accessing an item at index i in a LinkedList can require traversing the whole list (even if it is sorted!): linear time

• To get a more efficient search algorithm, it is not only important to use the right algorithm, we need to use the right data structure as well!
Binary Search

- Base cases? When are we done?
 - If list is too small (or empty) to continue searching
 - If item we’re searching for is the middle element

```python
def binary_search(a_lst, item):
    """Assume a_lst is sorted."""
    n = len(a_lst)
    mid = n // 2
    # base case 1
    if n == 0:
        return False
    # base case 2
    elif item == a_lst[mid]:
        return True
    # recursive cases...
```

Check middle

mid = n//2
Binary Search

• Recursive case:
 • Recurse on left side if item is smaller than middle
 • Recurse on right side if item is larger than middle

If item < a_lst[mid], then need to search in a_lst[:mid]

mid = n//2
Binary Search

- Recursive case:
 - Recurse on left side if item is smaller than middle
 - Recurse on right side if item is larger than middle

If item > a_lst[mid], then need to search in a_lst[mid+1:]
def binary_search(a_lst, item):
 """ Assume a_lst is sorted."""
 n = len(a_lst)
 mid = n // 2
 # base case 1
 if n == 0:
 return False
 # base case 2
 elif item == a_lst[mid]:
 return True
 # recurse on left
 elif item < a_lst[mid]:
 return binary_search(a_lst[:mid], item)
 # recurse on right
 else:
 return binary_search(a_lst[mid + 1:], item)

Technically, there is one small problem with our implementation. List splicing is actually $O(n)$!
```python
def binary_search_better(a_lst, item, index_start, index_end):
   """ Assume a_lst is sorted."""

   n = index_end - index_start
   mid = (n // 2) + index_start
   # base case 1
   if n <= 0:
       return False
   # base case 2
   elif item == a_lst[mid]:
       return True
   # recurse on left
   elif item < a_lst[mid]:
       return binary_search_better(a_lst, item, 0, mid)
   # recurse on right
   else:
       return binary_search_better(a_lst, item, mid+1, index_end)
```

Passing start/end indices as arguments avoids the need to splice!
Big-O Notation

- Tells you how fast an algorithm is / the run-time of algorithms
 - But not in seconds!
- Tells you how fast the algorithm grows in number of operations

$O(\log n)$

"Big O" Number of Operations
Understanding Big-O

- Notation: n often denotes the number of elements (size)

- **Constant time** or $O(1)$: when an operation does not depend on the number of elements, e.g.

 - Addition/subtraction/multiplication of two values, or defining a variable etc are all constant time

- **Linear time** or $O(n)$: when an operation requires time proportional to the number of elements, e.g.:

  ```python
  for item in seq:
      <do something>
  ```

- **Quadratic time** or $O(n^2)$: nested loops are often quadratic, e.g.,

  ```python
  for i in range(n):
      for j in range(n):
          <do something>
  ```
Big-O: Common Functions

- Notation: \(n \) often denotes the number of elements (size)
- Our goal: understand efficiency of some algorithms at a high level
Binary Search

• Applying binary search

```python
>>> binary_search(['Artie', 'Chels', 'Linus', 'Pixel', 'Sally', 'Wally'], 'Pixel')
True
>>> binary_search(['Artie', 'Chels', 'Linus', 'Pixel', 'Sally', 'Wally'], 'Scooby')
False
```
Binary Search with Flamenco Dancers

https://www.youtube.com/watch?v=wz7XgKowJlg
The end!
Leftover Slides
If `target_list[mid] == item`, we're done and we return True.
Binary Search

If item < target_list[mid], then need to search in left half

mid = n//2

- Update the right_index!
Binary Search

- Update the `left_index`!

If `item >= target_list[mid]`, then need to search in the right half.

`mid = n//2`
Binary Search

START THE PROCESS OVER AGAIN!

- If `target_list[mid] == item`, we're done and we return True
Binary Search

- `left_index` will be incremented repeatedly (due to the \geq) and will eventually be greater than `right_index`

while `left_index <= right_index`

- `right_index` will eventually be False if the item isn't there
Logarithmic Intuition
Suppose we want to create a 4x4 grid on a piece of paper:

Is there a faster way?

If drawing one square is considered one step, how many steps did this algorithm take?

16
Making a Grid

1. Take a scrap of paper
2. Fold it in half.
 - We made 2 boxes!
3. Fold it in half again.
 - How many boxes now? 4
1. Take a scrap of paper
2. Fold it in half.
 • We made 2 boxes!
3. Fold it in half again.
 • How many boxes now? 4
4. Fold it in half again.
 • How many boxes now? 8
5. Fold it in half again.
 • 4 folds total
6. Open the paper. How many boxes do we have?
1. Take a scrap of paper
2. Fold it in half.
 • We made 2 boxes!
3. Fold it in half again.
 • How many boxes now? 4
4. Fold it in half again.
 • How many boxes now? 8
5. Fold it in half again.
 • 4 folds total
6. Open the paper. How many boxes do we have? 16

If folding once is considered one step, how many steps did this algorithm take to make 16 boxes?
Describe Growth of the Folding Algorithm

- 1 Fold = 2 boxes
- 2 Folds = 4 boxes
- 3 Folds = 8 boxes
- 4 Folds = 16 boxes

What is the mathematical relationship to predict the number of folds [steps] based on number of boxes [elements]?

\[f = \log_2 b \]

\[2^f = b \]
Logarithms: our favorite function

• The inverse of exponents

• $\log_{10} 100 = ???$

• How many 10s do we multiply together to get 100?
 • $\log_{10} 100 = 2$

• In computer science, "log 8" most often implies $\log_2 8$

 $2^x = 16$ is equivalent to $\log_2 16 = x$
 $2^4 = 16$ is equivalent to $\log_2 16 = 4$
 $2^6 = 64$ is equivalent to $\log_2 64 = 6$