CS|134 Lecture 28:;
Tic Tac Toe 4

Announcements & Logistics

Lab 9 Boggle: two-week lab now in progress!

Part | due tonight/tomorrow [0 pm

WIll return auto-tester feedback on it on Friday

You can fix anything broken before turning in Part 2
Must turn in something to get Part 2 grade apply to both
Part 2 due May |/2 (handout will be posted soon)

Part 2 also has a prelab!

Asks you to draw out the Boggle game logic (similarto TTT logic we
will discuss today)

Do You Have Any Questions?

Last [iIme and loday

* Implemented Cube and Board classes
- Joday: wrap up the game
* Implement T T TGame class

- Talks to each of the classes and calls

appropriate methods to implement
game logic

- [TT vs Boggle discussion

[T TGame Logic

[TT Game Logic

Start
A
v N
i Y Update
Wait fo.r Ir.1 Y Get Empty | cube
mouse click Grid? cube space? di
isplay
A N v
Result Y Reset
In is aWin? state
Reset <I Reset A
state button?
Ny
N Result Y
is a draw?
In Exit Y > End ‘ Change
button? : players
N

Translating our Logic to Code

Let’s think about __1h1t__:

« What do we need!

»+ a board, player, and maybe num_moves (to detect draws easily)

Start
. Y
e —— Gria? X, — 7 —
I l N !
Y
Win? o
Rese Y ta
. <+— Reset?
N
Nl Y
Draw?
Y
Exit? |—> pppppp —p
N

Translating our Logic to Code

- Now let's write a method for handling a single mouse click (point)
+ The game continues (walts for more clicks) if this method returns True

» It this method returns False, game ends

def do_one_click(self, point):

if self._board.in_exit(point):

step 1: check for exit button 4
N
TODO

Wait f Y Y
ait for Grid? Empty I Place

mouse click space? Cube

step 2: check for reset button
elif self. board.in_reset(point): qu v
TODO

Reset
state

Ny
Draw? Y

> End |_> Change —

players

Win? —

step 3: check if click on the grid
elif self._board.in_grid(point):
TODO

keep going!
return True

Translating our Logic to Code

Let's handle the "exit” button first (since it's the easiest)

if self. _board.in_exit(point):
print("Exiting...")
game over
return False

Translating our Logic to Code

Now let's handle reset

elif self. _board.in_reset(point):
print("Reset button clicked")
self. board.reset()
self. _board.set_string_to_upper_text("")
self. _num_moves = 0
self._player = "X"

Translating our Logic to Code

Finally, let's handle a “normal” move. Start by getting point and Cube

elif self._board.in_grid(point):

get the cube at the point the user clicked
tcube = self. board.get_ttt cube at _point(point)

Translating our Logic to Code

elif self._board.in_grid(point):

The rest of our
get the cube at the point the user clicked

COde ChECkS for d tcube = self._board.get_ttt_cube_at_point(point)
valid move, a win, a | |
make sure this square 1s vacant

dravv, aﬂd Upda'tes if tcube.get_letter() == "":
: tcube.set_letter(self._player)
state accordingly

tcube.place_cube(self._board)

At the end, T the # valid move, so increment num_moves
: self._num_moves += 1

move was valid, we

check for win or draw
Swap players win_flag = self._board.check_for_win(self._player)

if win_flag:

self._board.set_string_to_upper_text(self._player + " WINS!")
elif self._num_moves == self._board.get_rows()

x self._board.get_cols():
self._board.set_string_to_upper_text("DRAW!")
not a win or draw, swap players
else:
toggle player!
self._player = "0" if self._player == "X" else "X"

keep going!
return True

TTT Summary

Basic strategy

Board: start general, don't think about game specific details

+ TTTBoard: extend generic board with TTT specific features
Inherit everything, update attributes/methods as needed
» TTTCube isolate functionality of a single TTT cube on board
- Think about what features are necessary/helpful in other classes
+ TTTGame: think through logic conceptually before writing any code

- Translate logic Into code carefully, testing along the way

Class Discussion:
Bogsle vs I T'T Design Differences

heclal Methoc

s/Magic Methoc

Special Methods

- Start and end with __ (double underscore)

- Called magic methods (or informally dunder methods)
-+ Often not called explicitly using dot notation and called by other means

- What special methods have we already used seen/used so far?
* __1init__(self, val)
- When is it called!

- Automatically when we create an instance (object) of the class

» Can also be invoked as obj.__init__(val) (where objis

an instance of the class)

Special Methods

e str_ (self)
* When is 1t called?
- When we print an instance of the class using print(obj)
- Also called whenever we call str function onit: str(obj)
+ Can also be invoked as obj.__str__()
* __ repr__(self)

Also returns a string but its format Is very specific (can be used to
recreate the object of the class)

Useful for debugging

Don't worry about any more specifics for this class

Special Methods for Operators

We can use mathematical and logical operators such as ==/+ to compare/add

two objects of a class by defining the corresponding special method

Example of polymorphism (using a single method or operator for different uses)

+ _eqg__ (self,

. ne (self,

. 1t (self,

+ gt (self,
« _add__ (self,

« _sub__ (self,

- _mul__ (self,

- There are many others!

other):
other):
other):

other):

other)

other):

other):

X

X

< K K K X

y
y

add__: why we can
concatenate sequences
with + as well as add
ints with +

Special Method: len

e len_ (self)

- Called when we use the built-in function len () in Python on an
object 0bj of the class: len(obj)

- We can call len () function on any object whose class has the

Len__ () special method implemented

- All built-in collection data types we saw (string, list, range, tuple, set,
dictionaries) have this special method implemented

» This is why we are able to call Len on them
» What is an example of a built-in type that we can't call Len on?

- 1nt, float, Bool, None

Other S

beclal Methoc

s for Sequences

- What other sequence operators have we used In this class!

- They each have a special method that Is called w

- Get an item at an index a sequence using [

__getitem__

nenever they are used

calls

+ e.g, word_1st[2] implicitly callsword_1lst.__getitem__(2)

- Set an item at an index to another val using []:calls
__setitem__

» e.g, word_1lst[@] = "hello" implicitly calls
word lst. setitem_ (@, "hello)

1n Operator: __contains__

__contains__(self, val)
- When we say 1T elem 1n seq in Python:

* Python calls the __contains__ special method on seq

» Thatis, seq.__contains__(elem)

+ If we want the 1N operator to work for the objects of our class, we can do so by

implementing the __contailns__ special method

'teration Special Methods

- What if we want to "iterate” over an object of our class in a for loop!?

- We can achieve this by implementing appropriate special methods:

A forloop in Python can iterate over any object whose class has the
special methods __1ter___and __next__ defined

» Such objects are called iterables

- We can make objects of our class rterable by defining these methods

appropriately

'Extra] For loop: Behind the Scenes

a simple for loop to 1iterate over a list
for i1tem in num_lst:
print(item)

- Behind the scenes, the for loop Is simply a while loop In disguise,
driving iteration within a try-except statement. The above loop Is
really:

try:
yj_t = iter(num_1lst) Call the 1ter method on object
while True:
item = next(it)
print(item)

except StopIteration: Access the hext item if it exists, then print it

pass
This is a way to “hide” the error

lakeaway

- We can implement any of these functionalities that built-in types enjoy for

objects of our own class by defining the appropriate special methods

