
CS134 Lecture 23:
Classes and Objects III

Announcements & Logistics
• HW 7 due tonight (on Glow)

• Lab 8 is a partner lab : autocomplete

• No prelab but do read the handout before arriving
• Working with three classes, each in their own files

• Good idea to use pencil/paper and map out the different
attributes and methods

• Looking ahead: Lab 9 will be an implementation of the game Boggle

• Brings together all OOP concepts, and we get to "build" a game

Do You Have Any Questions?

Last Time
• Built the Book class to represents book objects

• Learned about private, protected, public attributes and methods
(indicate scope using underscores in Python)

• Explored accessor (getter) and mutator (setter) methods in Python

• Talked about __init__ (aka constructor) and __str__ methods

Today’s Plan
• Design a Library class that stores a sorted shelf of Book objects

• Tools we need:

• sorted() function in Python (with optional parameter key)

• requires us to pass a function as a parameter

• first time using optional arguments in function/method calls

• We’ll also review some useful string methods, including:

• s.split(), s.join(), s.format()

class Book:
 """This class represents a book with attributes title, author, and year"""

 # attributes: _title, _author, _year
 def __init__(self, book_title, book_author, book_year):
 self._title = book_title
 self._author = book_author
 self._year = int(book_year)

 # accessor (getter) methods
 def get_title(self):
 return self._title

 def get_author(self):
 return self._author

 def get_year(self):
 return self._year

 # mutator (setter) methods
 def set_title(self, book_title):
 self._title = book_title

 def set_author(self, book_author):
 self._author = book_author

 def set_year(self, book_year):
 self._year = int(book_year)

 # methods for returning book properties
 def num_words_in_title(self):
 """Returns the number of words in title of book"""
 return len(self._title.split())

 def years_since_pub(self, current_year):
 """Returns the number of years since book was published"""
 return current_year - self._year

 def same_author_as(self, other_book):
 """Check if self and other_book have same author"""
 return self._author == other_book.get_author()

Last Time: Book Class

Library Class
• Let's build a Library class that stores a collection of Books

• Data attribute:

• _books : collection of book objects

• What built-in collection data type to use?

• sorted, unsorted? mutable, immutable?

• What methods?

• __init__, __str__

• check out a book

• return a book

• Invariant: shelves should remain in sorted order!

Library Class: Constructor
from book import Book

class Library:
 '''Represents a sorted shelf of Book objects'''

 def __init__(self, list_of_books=[]):
 self._books = [b for b in list_of_books]

Create a new list containing the list of Book objects
passed when an object is created

if __name__ == "__main__":
 # creating book objects:
 b1 = Book('Pride and Prejudice', 'Jane Austen', 1813)
 b2 = Book('Emma', 'Jane Austen', 1815)
 b3 = Book("Parable of the Sower", "Octavia Butler", 1993)
 # creating library object
 lib = Library([b1, b2, b3])

Calls __init__ on lib
object (passed to self)

Library Class: __str__
from book import Book
class Library:
 '''Represents a sorted shelf of Book objects'''

 def __str__(self):
 list_of_strings = []
 for book in self._books:
 list_of_strings.append(str(book))
 return " | ".join(list_of_strings)

if __name__ == "__main__":
 # creating book objects:
 b1 = Book('Pride and Prejudice', 'Jane Austen', 1813)
 b2 = Book('Emma', 'Jane Austen', 1815)
 b3 = Book("Parable of the Sower", "Octavia Butler", 1993)
 # creating library object
 lib = Library([b1, b2, b3])
print(lib)

Calls str special method on each Book object and
accumulates them in a list

joins the string in list_of_strings together with
the connector string " | " in between each

Calls __str__ method on lib object

Library Class: Other Methods
from book import Book
class Library:
 '''Represents a sorted shelf of Book objects'''

 def checkout(self, title) :
 '''given title (str) of a book, checks if it
 is in the library, if it is remove it and return True,
 else return False'''
 for book in self._books:
 if book.get_title() == title:
 self._books.remove(book)
 return True
 return False

List method that deletes the given
item from the list

Library Class: Other Methods

from book import Book
class Library:
 '''Represents a sorted shelf of Book objects'''

 def shelve(self, book) :
 # add the book back to the shelves
 self._books.append(book)

 # now the shelves might be out of order!
 # lets sort them by author name
 self._books = sorted(self._books, key=Book.get_author)

To understand this, we need to review
sorted() function in Python

Detour: Built-in
sorted() function

sorted()
• sorted() is a built-in Python function (not a method!) that takes a

sequence (string, list, tuple) and returns a new sorted sequence as a list

• By default, sorted() sorts the sequence in ascending order (for
numbers) and alphabetical order for strings

• sorted() does not alter the sequence it is called on and always returns
the type list
>>> nums = {42, -20, 13, 10, 0, 11, 18} # set of ints

>>> sorted(nums) # this returns a list!

[-20, 0, 10, 11, 13, 18, 42]

>>> letters = ['a', 'c', 'z', 'b', 'Z', ‘A']

>>> sorted(letters)

['A', 'Z', 'a', 'b', 'c', 'z']

Changing the Default Sorting Behavior
• To better understand the sorted() function, look at documentation

• An iterable is any object over which we can iterate (list, string, tuple, range)

• The optional parameter key specifies a function or method that determines
how each element should be compared to other elements

• The optional boolean parameter reverse (which by default is set to False)
allows us to sort in reverse order

Reverse Sorting Example
• Let’s consider the optional reverse parameter to sorted()

• Sort sequences in reverse order by setting this parameter to be True
>>> nums = [42, -20, 13, 10, 0, 11, 18]

>>> sorted(nums, reverse=True)

[42, 18, 13, 11, 10, 0, -20]

Sorting with a key function
• Suppose we want to sort a data type based on our own criteria

• Example: A list of course tuples, where the first item is the course name,
second item is the enrollment capacity, and third item is the term (Fall/Spring).

• Suppose we want to sort these courses by their capacity (second element)

• We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

• This same logic applies to sorting objects of any class that we define

• We can sort them based on a specific attribute

courses = [('CS134', 90, 'Spring'), ('CS136', 60, 'Spring'),
 ('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),
 ('MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),
 ('PSYC201', 50, 'Fall'), ('MATH110', 90, 'Spring')]

Sorting with a key function
• Defining a key function explicitly:

• We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

• We can pass this function as a key when calling sorted()

def get_capacity(course):
 '''Takes a course tuple and returns capacity'''
 return course[1]

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_capacity)

• sorted(seq, key=function)

• Interpret as for el in seq: use function(el) to
determine where within sort order of seq that el belongs

• For each element in the sequence, sorted() calls the key
function on the element to figure out what “feature” of the data
should be used for sorting

• For each course in courses (a list of lists), sort based on value
returned by capacity(course)

Sorting with a key function

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_capacity)

Example: Sorting with key

def get_capacity(course):
 '''Takes a course tuple and returns capacity'''
 return course[1]

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_capacity)

courses = [('CS134', 90, 'Spring'), ('CS136', 60, 'Spring'),
 ('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),
 ('MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),
 ('PSYC201', 50, 'Fall'), ('MATH110', 90, 'Spring')]

[('MUS112', 10, 'Fall'),
 ('AFR206', 30, 'Spring'),
 ('ECON233', 30, 'Fall'),
 ('STAT200', 50, 'Spring'),
 ('PSYC201', 50, 'Fall'),
 ('CS136', 60, 'Spring'),
 ('CS134', 90, 'Spring'),
 ('MATH110', 90, 'Spring')]

Sorting Objects using key
• Suppose we want to sort the Books in a list of Books using a specific data

attribute (such as author's name)

• We can use the “getter” method for that attribute as our key argument

• Caveat: Key needs to be a function that can be applied to every object
of the sequence, not a method that is called on an individual object

• Each method is a function that belongs to a given class

• The following are equivalent (left is method get_author called on
Book b, right: function Book.get_author called on Book b):

b = Book("Dune", "Herbert, Frank", 1965)

b1.get_author() Book.get_author(b1)

• The following sorts a list of Book objects by their author's name

• To use the “getter method” from the class Book as key, we need to use
the functional variant Book.get_author

• This function is called on every Book object and the result is used as
the sorting criteria (author names)

• sorted() returns a new list of Book objects arranged in the alphabetical
order of their author's name

Sorting Objects using key

sorted_books = sorted(list_of_books, key=Book.get_author)

Reading Books from CSV
Example in Class

Review: String Methods

Useful String Methods
>>> s = " CSCI 134 is great!\n \t"
>>> s.strip()
'CSCI 134 is great!'

>>> lst = ['starry', 'starry', 'night']
>>> stars = '**'.join(lst)
>>> stars
'starry**starry**night'

>>> stars.split('**')
['starry', 'starry', 'night']

>>> "I have {} {} & {} {}".format(2,'cats',1,'dog')
'I have 2 cats & 1 dog.'

Remove whitespace from left/right
sides of the string s

Discover more str methods with pydoc3 str !

Joins all elements from list of str,
lst, using the leading str '**'

Splits all elements from str stars,
using the str argument'**'

Inserts arguments into the {} in the
str instance object.

Special Methods

Special methods and attributes
• We’ve seen several “special” methods and attributes in Python:

• __name__ special module attribute

• __main__ name attribute of scripts

• __init__ method

• __str__ method

Other Special Methods
• There are many other “special” methods in Python.

• __len__(self): len(x)

• __contains__(self, item): item in x
• __eq__ (self, other):
• __lt__ (self, other):
• __gt__ (self, other):
• __add__(self, other) :
• __sub__(self, other):
• __mul__(self, other):
• __truediv__(self, other):
• __pow__(self, other):
• There are others!

We’ll come back
to these in a few

weeks!

x == y
x < y
x > y
x + y
x - y
x * y
 x / y
x ** y

Another Class Example

Another Example: Name Class
• Names of people have certain attributes

• Almost everyone has a first and last name

• Some people have one (or more) middle name(s)

• We can create name objects by defining a class to represent these
attributes

• Then we can define methods, e.g., getting initials of people's names, etc
• Let's practice some of the concepts using this class

• __str__: how do we want the names to be printed?
• initials: can we define a method that returns the initials of

people's names?

Example: Name Class
class Name:
 """Class to represent a person's name."""

 def __init__(self, first, last, middle=''):
 self._f = first
 self._m = middle
 self._l = last

 def __str__(self):
 # if the person has a middle name
 if len(self._m) > 0:
 return self._f[0] + '. ' + self._m[0] + '. ' + self._l
 else:
 return self._f[0] + '. ' + self._l

>>> n1 = Name("John", “Schmidt", “Jacob Jingleheimer")

>>> n2 = Name("Paul", "Bunyan")

>>> print(n1)

J. J. Schmidt

>>> print(n2)

P. Bunyan

Sets a default
value, in case

middle name isn't
given!

intials() method
• Suppose we want to write a method that returns the person’s initials

as a string?
• How would we do that?

Example: Name Class
class Name:
 """Class to represent a person's name."""

 def __init__(self, first, last, middle=''):
 self._f = first
 self._m = middle
 self._l = last

 def initials(self):
 if len(self._m) > 0:
 return self._f[0] + '. ' + self._m[0] + '. ' + self._l[0] + '.'
 else:
 return self._f[0] + '. ' + self._l[0] + '.'

 def __str__(self):
 # if the person has a middle name
 if len(self._m) > 0:
 return self._f[0] + '. ' + self._m[0] + '. ' + self._l
 else:
 return self._f[0] + '. ' + self._l

>>> n1 = Name("John", “Schmidt", “Jacob Jingleheimer")
>>> n1.initials()
'J. J. S.'
>>> n2 = Name("Paul", "Bunyan")
>>> n2.initials()
'P. B.’

