CS134 Lecture 23:
Classes and Objects |l

Announcements & Logistics

HW 7 due tonight (on Glow)

Lab 8 is a partner lab : autocomplete
No prelab but do read the handout before arriving
Working with three classes, each in their own files

Good idea to use pencil/paper and map out the different
attributes and methods

Looking ahead: Lab 9 will be an implementation of the game Boggle

Brings together all OOP concepts, and we get to "build" a game

Do You Have Any Questions!?

L ast [Ime

- Built the Book class to represents book objects

- Learned about private, protected, public attributes and methods
(indicate scope using underscores in Python)

- Explored accessor (getter) and mutator (setter) methods in Python

» Talked about __1n1t__ (aka constructor) and __Str__ methods

Jloday's Plan

» Design a Library class that stores a sorted shelf of Book objects

« Jools we need:

- sorted() function in Python (with optional parameter key)
* requires us to pass a function as a parameter

» first time using optional arguments in function/method calls

- Welll also review some useful string methods, including:

- s.split(), s.join(), s.format()

Last Time: Book Class

"""This class represents a book with attributes title, author, and year"""

attributes: _title, _author, _year
def __init___(self, book_title, book_author, book_year):
self. _title = book title
self._author = book_author
self._year = int(book_year)

accessor (getter) methods
def get_title(self):
return self._title

def get_author(self):
return self._author

def get_year(self):
return self._year

mutator (setter) methods
def set_title(self, book title):
self. _title = book title

def set_author(self, book_author):
self._author = book_author

def set_year(self, book_year):
self._year = int(book_year)

methods for returning book properties

def num_words_in_ title(self):
"""Returns the number of words in title of book"""
return len(self._title.split())

def years_since_pub(self, current_year):
"""Returns the number of years since book was published"""
return current_year - self._year

def same_author_as(self, other_book):
"""Check if self and other_book have same author"'""
return self._author == other_book.get_author()

Library Class

- Let's build a Library class that stores a collection of Books

« Data attribute:

 What methods!?

_books : collection of book objects

* What built-in collection data type to use!?

* sorted, unsorted? mutable, immutable!?

nit, str

* check out a book

* return a book

* |nvariant: shelves should remain in sorted order! III\\ '"IIIII

Library Class: Constructor

from book import Book .cite 2 new list containing the list of Book objects

passed when an object Is created
class Library:

'''"Represents a sort .d shelf of Book objects'''

def _init_ (self, list_of books=[]):
self. books = [b for b in list of books]

Calls __1nit__ on lib
| | object (passed to se L)
if _name__ == "_ main__":

creating book objects:
bl = Book('Pride and Prejudic- -~ 'Jane Austen', 1813)
b2 = Book('Emma', 'Jane Arsten', 1815)

b3 = Book("Parable of ‘«ne Sower", "Octavia Butler", 1993)
creating libraryv.-object

lib = Library([bl, b2, b3])

Library Class: __str

from book import Book
class Library:

'''Represents a sorted shelf of Book objects'''

Calls str special method on each Book object and
def str (self): accumulates them in a list

list_of _strings = []
for book 1n self._books:
list _of_strings.append(str(book))

return " | ".join(list_of_strings)
if name —= " main ": joins the string in L1st_of_strings together with
— — — — the connector string ™' | " in between each

creating book objects:
bl = Book('Pride and Prejudice', 'Jane Austen', 1813)

b2 = Book('Emma', 'Jane Austen', 1815)

b3 = Book("Parable of the Sower", "Octavia Butler", 1993)
creating library object
lib = Library([bl, b2, b3])
print(lib)

Calls __str__ method on L1b object

Library Class: Other Methods

from book import Book

class Library:
'''"Represents a sorted shelf of Book objects

def checkout(self, title)
'''given title (str) of a book, checks if it
is in the library, if it 1s remove it and return True,
else return False'''
for book in self. books:
if book.get_title() == title:
self. books.remove(book)
return True
return False

List method that deletes the given
item from the list

Library Class: Other Methods

from book import Book

class Library:
'''"Represents a sorted shelf of Book objects

def shelve(self, book)
add the book back to the shelves

self. _books.append(book)

now the shelves might be out of order!

lets sort them by author name
self._books = sorted(self._books, key=Book.get_author)

To understand this, we need to review
sorted() function in Python

Detour: Bullt-In
sorted() function

sorted()

- sorted() is a built-in Python function (not a method!) that takes a
sequence (string, list, tuple) and returns a new sorted sequence as a list

+ By default, sorted() sorts the sequence in ascending order (for
numbers) and alphabetical order for strings

- sorted() does not alter the sequence it is called on and always returns
the type l1st

>>> nums = {142, -20, 13, 10, 0, 11, 18} # set of ints
>>> sorted(nums) # this returns a list!

[-20, 0, 10, 11, 13, 18, 42]

z', 'b', 'z2', 'A']

>>> letters = [Ialp ICII
>>> sorted(letters)

[IAI’ IZI’ Ial’ Ibl’ ICI’ IZI]

Changing the Default Sorting Behavior

+ To better understand the sorted () function, look at documentation
help(sorted)

Help on built-in function sorted in module builtins:

sorted(iterable, /, *, |key=None, reverse=False)
Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

- Aniterable is any object over which we can rterate (list, string, tuple, range)

- The optional parameter key specifies a function or method that determines
how each element should be compared to other elements

- The optional boolean parameter reverse (which by default is set to False)
allows us to sort in reverse order

Reverse Sorting Example

- Let's consider the optional reverse parameter to sorted()

» Sort sequences In reverse order by setting this parameter to be True

>>> nums = [42, -20, 13, 10, 0, 11, 18]
>>> sorted(nums, reverse=True)

[42, 18, 13, 11, 10, 0, -20]

Sorting with a Key function

Suppose we want to sort a data type based on our own criteria

Example: A list of course tuples, where the first item Is the course name,
second item Is the enrollment capacity, and third item is the term (Fall/Spring).

'CS134"', 90, 'Spring'), ('CS136', 60, 'Spring'),
'AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),

'MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),
'PSYC201', 50, 'Fall'), ('"MATH110', 90, 'Spring')]

courses [

N N N N

Suppose we want to sort these courses by their capacity (second element)

* We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

- This same logic applies to sorting objects of any class that we define

- We can sort them based on a specific attribute

Sorting with a Key function

- Defining a key function explicitly:

+ We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

def get_capacity(course):
'''"Takes a course tuple and returns capacity'''
return course[1]

- We can pass this function as a key when calling sorted ()

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_ capacity)

Sorting with a Key function

sorted(seq, key=function)

Interpret as for el in seq: use function(el) to
determine where within sort order of seq that e L belongs

For each element in the sequence, sorted() calls the key
function on the element to figure out what “feature” of the data

should be used for sorting
we can tell sorted() to sort by capacity instead

sorted(courses, key=get capacity)

For each course in courses (a list of lists), sort based on value
returned by capacity(course)

EXam

courses = |

'‘MUS112°',

('CS134',

('AFR206"',
(
(

ble: Sorting wr

90, 'Spring')

h key

('CS136', 60, 'Spring'),

30, 'Spring'), ('ECON233', 30, 'Fall'),
10, 'Fall'), ('STAT200', 50, 'Spring'),
'PSYC201', 50, 'Fall'), ('"MATH110', 90, 'Spring')]

def get _capacity(course):

'"'"Takes a course tuple and returns capacity

return course[1]

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_capacity)

'Fall'),
'Spring'),
'Fall'),
'Spring'),
'Fall'),

[(*MUS112"',
('AFR206"',
('ECON233",
('STAT200',
('PSYC201"',
('CS136°',
('CS134',
('"MATH110',

10,
30,
30,
50,
50,
60,
90,
90,

'S
'S
'S

oring'),
oring'),

oring')]

Sorting Objects using kKey

Suppose we want to sort the Books in a list of Books using a specific data
attribute (such as author's name)

+ We can use the “getter’” method for that attribute as our key argument

Caveat: Key needs to be a function that can be applied to every object
of the sequence, not a method that is called on an individual object

Fach method is a function that belongs to a given class

» The following are equivalent (left is method get_author called on

Book b, right: function Book.get_author called on Book b):

b = Book("Dune", "Herbert, Frank", 1965)

bl.get_author()L(—-————b»Book.get_author(bl)‘

Sorting Objects using kKey

+ The following sorts a list of Book objects by their author's name

o use the “getter method” from the class Book as key, we need to use
the functional variant Book.get_author

- This function is called on every Book object and the result is used as
the sorting criteria (author names)

sorted() returns a new list of Book objects arranged in the alphabetical
order of their author's name

sorted_books = sorted(list_of_books, key=Book.get_author)‘

Reading Books from CSV
xample In Class

Review: String Methods

Usetul String Methods

Discover more str methods with pydoc3 str !

>>> g = CSCI 134 1s great'\n \t"

>>> §,.ST I"lp() —_ Remove whitespace from left/right
'"CSCT 134 is great | ! sides of the string S
>>> 1st = ['starry', 'starry', 'night']

>>> stars = 'sx'.join(1lst)

>>> stars - Joins all elements from list of str,
'starry++starry++night' Lst, using the leading str '*x'

>>> stars. Spllt(Rk) \Splits all elements from str stars,
[Starry') ' starry' , ' night '] using the str argument'**"

>>> "I have {} {} & {} {}".format(2,'cats',1, "'dog")
'T have 2 cats & 1 dog.'

Inserts arguments into the { } in the
STr instance object.

Special Methods

Special methods and attributes

We've seen several “special” methods and attributes in Python:

* __hame__ special module attribute
* __Mmailn__ name attribute of scripts
+ __1n1t__ method

Str__ method

There are many other “special” methods in Python.

Other Special Methods

__len__(self):
__contains__(s
__eq__ (self,
__Llt__ (self,
__gt__ (self,
__add__(self,
__sub__(self,
__mul__(self,

__truediv__(self, other): X /vy
__pow__(self, other): X ** vy

« [here are others!

el
ot
ot
ot
ot
ot
ot

len(x)

f, 1tem): 1tem in x
her): x ==

ner): X <y

ner): X >y

ner) X + Yy

ner): X - Yy

her): X * vy

We'll come back
to these in a few
weeks!

Another Class Example

=) @ B \ /R
o HB8 GBI S

Another Example: Name Class

- Names of people have certain attributes
- Almost everyone has a first and last name
- Some people have one (or more) middle name(s)

- We can create name objects by defining a class to represent these
attributes

- Then we can define methods, e.g, getting Initials of people's names, etc
» Let's practice some of the concepts using this class

__str__:how do we want the names to be printed!

* initials: can we define a method that returns the initials of
people's names!

xample: Name Class

class Name:
"Class to represent a person's name.

def __init__(self, first, last, middle='"'):

22%1]::::1 ~ Egﬁfe \ Sets a default
self._l = last value, in case
middle name isn't
def __str__(self): given!

1f the person has a middle name
if len(self._m) > 0:
return self. f[0] + '. ' + self. m[Q] + '. ' + self._1

else: o
return self. f[0] + '. ' + self._1
>>> nl = Name("John", “Schmidt", “Jacob Jingleheimer™)
>>> nZ2 = Name("Paul"”, "Bunyan")

>>> print(nl)
J. J. Schmidt
>>> print(n2)
P. Bunyan

intials() methoa

Suppose we want to write a method that returns the person’s inrtials
as a string!

How would we do that!

xample: Name Class

class Name:
"H"iClass to represent a person's name."""

def __init__(self, first, last, middle=""'):

self. f = first
self. m = middle
self. 1 = last

def initials(self):
if len(self._m) > 0:
return self. f[0] + '. ' + self. m[O] + '. ' + self._1[0] + '.'
else:
return self. f[0] + '. ' + self._1[0] + '.'

def str_ (self):
1f the person has a middle name
if len(self._m) > 0:
return self. f[0] + '. ' + self. m[Q] + '. ' + self._1
else:
return self._f[0] + '. ' + self._1

>>> nl = Name("John", “Schmidt", “Jacob Jingleheimer™)
>>> nl.initials()

'J. J. S.°

>>> n2 = Name("Paul", "Bunyan")

>>> n2.initials()

'P. B.’

