
CS134 Lecture 20:
More Recursion

Announcements & Logistics
• HW 6 on GLOW due Mon at 10pm

• Good practice for short-code questions on exam
• Practice on pencil and paper first

• Lab 7, 8, and 9 are partner labs
• Pair programming is an important skill as well as a vehicle for

learning
• Colloquium Today: Tim Randolph ’18

• Theoretical computer science talk on the Subset Sum problem (a
problem you may use a “brute-force” approach to solve recursively
in a future assignment!)

Do You Have Any Questions?

Last Time
• Introduction to recursion

• Recursion as a new problem solving paradigm

• Recursion as an alternative to iteration

• Recursive solution to a familiar problem (count elements in a list)

• A recursive function is a function that calls itself

• A recursive approach to problem solving has two main parts:
• Base case(s). When the problem is so small, we can solve it

directly, without having to reduce it any further
• Recursive step. Does the following things:

• Performs an action that contributes to the solution
• Reduces the problem to a smaller version of the same

problem, and calls the function on this smaller subproblem

• The recursive step is a form of "wishful thinking”
(also called the inductive hypothesis)

Last Time: Recursive Approach to Problem Solving

• Let’s review a simple recursive function that gives us some intermediate
feedback through print statements:
• we’ll write a recursive function to print integers from n down to 1

• Recursive definition of countdown:
• Base case: n = 1, print(n)
• Recursive rule: print(n), call count_down(n-1)

Understanding Recursive Functions

Perform one step Reduce the problem (or make
the problem “smaller”)

Print and stop

• Recursive definition of countdown:
• Base case: n = 1, print(n)
• Recursive rule: print(n), count_down(n-1)

Understanding Recursive Functions

def count_down(n):
 '''Prints numbers from n down to 1'''

if n == 1:
 print(n)

 else:
 print(n)
 count_down(n-1)

>>> result = count_down(5)
5
4
3
2
1

Base case: n == 1

Recursive case: n > 1:

• Recursive functions seem to be able to reproduce looping behavior
without writing any loops at all

• To understand what happens behind the scenes when a function calls
itself, let’s review what happens when a function calls another function

• Conceptually we understand function calls through the function frame
model

Understanding Recursive Functions

Review:
Function Frame Model

• Consider a simple function square
• What happens when square(5) is invoked?

def square(x):

return x*x

Review: Function Frame Model

>>> square(5)

5

square(5)

x

return x * x

25

Review:
Function Frame Model

>>> square(5) + 4

• When we return from a function frame
"control flow" goes back to where the
function call was made

• Function frame (and the local variables
inside it) are destroyed after the return

• If a function does not have an explicit
return statement, it returns None after all
statements in the body are executed 5

square(5)

x

return 25

Return value replaces the
function call

25

Summary:
Function Frame Model

• How about functions that call other functions?

def sum_square(a, b):

return square(a) + square(b)

• What happens when we call sum_square(5, 3)?

Review:
Function Frame Model

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

3

square(3)

x

return x * x

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

3

square(3)

x

return x * x

9

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

3

square(3)

x

return x * x

9

34

Function Frame Model to
Understand count_down

>>> val = count_down(5)
5
4
3
2
1

>>> val = count_down(4)
4
3
2
1

def count_down(n):
 '''Prints ints from n down to 1'''
 if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

>>> val = count_down(4)
4

3
2

Base case reached!

1

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

>>> val = count_down(4)
4

3
2

1

Base case reached!

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

>>> val = count_down(4)
4

3
2

Base case reached!

1

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

>>> val = count_down(4)
4

3
2

Base case reached!

1

countDown(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

>>> val = count_down(4)
4

3
2

Base case reached!

1

Recursion GOTCHAs!

• If the problem that you are solving recursively is not getting

smaller, that is, you are not getting closer to the base case ---
infinite recursion!

• Never reaches the base case

GOTCHA #1

def count_down_gotcha(n):
 '''Prints ints from 1 up to n’''
 if n == 1: # Base case
 print(n)
 else: # Recursive case
 print(n)
 count_down_gotcha(n)

Subproblem not getting smaller!

• Missing base case/unreachable base case--- another way to
cause infinite recursion!

GOTCHA #2

def print_halves_gotcha(n):
 """Prints n, n/2, down to ... 1"""
 if n >= 0:
 print(n)
 return print_halves_gotcha(n/2)

Always true!

• In practice, the infinite recursion examples will terminate
when Python runs out of resources for creating function
call frames, leads to a "maximum recursion depth
exceeded" error message

"Maximum recursion
depth exceeded"

Recursion vs. Iteration:
sum_list

sum_list
• Goal: Write a function to sum up a list of numbers
• Iterative approach? (i.e., using loops?)

Iterative Approach to sum_list
• Goal: Write a function to sum up a list of numbers
• Iterative approach:

def sum_list_iterative(num_lst):
 sum = 0
 for num in num_lst:
 sum += num
 return sum

>>> sum_list_iterative([3, 4, 20, 12, 2, 20])
61

sum_list
• Goal: Write a function to sum up a list of numbers
• Recursive approach?

Recursive approach to sum_list
• Base case:

• num_lst is empty, return 0
• Recursive rule:

• Return first element of num_lst plus result from calling sum_list
on rest of the elements of the list.

• Example: Suppose num_lst = [6, 3, 6, 5]
• sum_list([6, 3, 6, 5]) = 6 + sum_list([3, 6, 5])
• sum_list([3, 6, 5]) = 3 + sum_list([6, 5])
• sum_list([6, 5]) = 6 + sum_list([5])
• sum_list([5]) = 5 + sum_list([])

• For the base case we have sum_list([]) returns 0

Recursive approach to sum_list
• Base case:

• num_lst is empty, return 0
• Recursive rule:

• Return first element of num_lst plus result from calling sum_list
on rest of the elements of the list.

• Example: Suppose num_lst = [6, 3, 6, 5]
• sum_list([6, 3, 6, 5]) = 6 + sum_list([3, 6, 5])
• sum_list([3, 6, 5]) = 3 + sum_list([6, 5])
• sum_list([6, 5]) = 6 + sum_list([5])
• sum_list([5]) = 5 + sum_list([])

• For the base case we have sum_list([]) returns 0
0 5

11

14

20

5

11

14

Recursive approach to sum_list

def sum_list(num_lst):
 """Returns sum of given list"""
 if num_lst == []:
 return 0
 else:
 return num_lst[0] + sum_list(num_lst[1:])

>>> sum_list([3, 4, 20, 12, 2, 20])
61

• Compare/Contrast:

Compare sum_list approaches

def sum_list(num_lst):
 if num_lst == []:
 return 0
 else:
 return num_lst[0] + sumList(num_lst[1:])

def sum_list_iterative(num_lst):
 sum = 0
 for num in num_lst:
 sum += num
 return sum

Graphical Recursion

The Turtle Module
• Turtle is a graphics module first introduced in the 1960s by computer

scientists Seymour Papert, Wally Feurzig, and Cynthia Solomon.
• It uses a programmable cursor — fondly referred to as the “turtle” — to

draw on a Cartesian plane (x and y axis.)

• turtle is available as a built-in module in Python. See the
Python turtle module API for details.

• Basic turtle commands:

Turtle In Python

fd(dist) turtle moves forward by dist
bk(dist) turtle moves backward by dist
lt(angle) turtle turns left angle degrees
rt(angle) turtle turns right angle degrees
up() (pen up) turtle raises pen in belly
down() (pen down) turtle lowers pen from belly
shape(shp) sets the turtle's shape to shp
speed(spd) sets the turtle's speed 1-10 (slow-fast). 0 skips animation.
home() turtle returns to (0,0) (center of screen)
clear() delete turtle drawings; no change to turtle's state
reset() delete turtle drawings; reset turtle's state
setup(width, height) create a turtle window of given width and height

Use from turtle import * to use these commands

https://docs.python.org/3/library/turtle.html

Basic Turtle Movement
• forward(dist) or fd(dist),  

left(angle) or lt(angle),  
right(angle) or rt(angle),  
backward(dist) or bk(dist)

set up a 400x400 turtle window
setup(400, 400)
reset()

fd(100) # move the turtle forward 100 pixels

lt(90) # turn the turtle 90 degrees to the left

fd(100) # move forward another 100 pixels

complete a square
lt(90)
fd(100)
lt(90)
fd(100)
done()

Drawing Basic Shapes With Turtle
• We can write functions that use turtle commands to draw shapes.
• For example, here’s a function that draws a square of the desired size

def draw_square(length):
 # a loop that runs 4 times
 # and draws each side of the square
 for i in range(4):
 fd(length)
 lt(90)
 done()

setup(400, 400)
reset()
draw_square(150)

Drawing Basic Shapes With Turtle
• How about drawing polygons?

def draw_polygon(length, num_sides):
 for i in range(num_sides):
 fd(length)
 lt(360/num_sides)
 done()

draw_polygon(80, 3) draw_polygon(80, 10)

Adding Color!
• What if we wanted to add some color to our shapes?
def draw_polygon_color(length, num_sides, color):
 # set the color we want to fill the shape with
 # color is a string
 fillcolor(color)

 begin_fill()
 for i in range(num_sides):
 fd(length)
 lt(360/num_sides)
 end_fill()
 done()

draw_polygon_color(80, 10, "purple")draw_polygon_color(80, 10, "gold")

Next Time: Recursive Figures With Turtle
• Next time we will explore how to draw recursive pictures with Turtle

