CS|134 Lecture 20:
More Recursion



Announcements & Logistics

HW 6 on GLOW due Mon at |0pm
Good practice for short-code questions on exam
Practice on pencil and paper first

Lab 7/, 8,and 9 are partner labs

Pair programming is an important skill as well as a vehicle for
learning

Colloquium Today: Tim Randolph "I 8

Theoretical computer science talk on the Subset Sum problem (a
problem you may use a “brute-force’ approach to solve recursively
in a future assisnment!)

Do You Have Any Questions!?



L ast [ Ime

* |Introduction to recursion
» Recursion as a new problem solving paradigm
« Recursion as an alternative to iteration

»  Recursive solution to a familiar problem (count elements in a list)

A
A#xvl A#AVA:A




Last Time: Recursive Approach to Problem Solving

A recursive function is a function that calls itself
* A recursive approach to problem solving has two main parts:

- Base case(s). VWhen the problem is so small, we can solve it
directly, without having to reduce 1t any further

- Recursive step. Does the following things:
« Performs an action that contributes to the solution

* Reduces the problem to a smaller version of the same
problem, and calls the function on this smaller subproblem

» The recursive step Is a form of "wishful thinking” ‘
(also called the Inductive hypothesis)



Understanding Recursive Functions

Let's review a simple recursive function that gives us some intermediate
feedback through print statements:

- we'll write a recursive function to print integers from N down to 1
Recursive definrtion of countdown:
Base case: n = 1, print(n) Print and stop

Recursive rule: print(n), call count_down(n-1)

Perform one step Reduce the problem (or make
the problem “smaller”)



Understanding Recursive Functions

Recursive definrtion of countdown:
Base case: n = 1, print(n)

Recursive rule: print(n), count_down(n-1)

def count _down(n):

""'"Prints numbers from n down to 1'"''
# Base case: n ==
if n == 1:
print(n)
# Recursive case: n > 1:
else:
print(n)
count_down(n-1)

>>> result = count_down(5)

=N WS O



Understanding Recursive Functions

- Recursive functions seem to be able to reproduce looping behavior
without writing any loops at all

» o understand what happens behind the scenes when a function calls
itself, let's review what happens when a function calls another function

» Conceptually we understand function calls through the function frame
model



Review:
Function Frame Model



Review: Function Frame Moael

* Consider a simple function square

* What happens when square(5) is invoked?

def square(x):

return Xxsxkx




Review:
Function Frame Model

>>> square(5)

25




Summary:
Function Frame Model

- When we return from a function frame Return value replaces the
"‘control flow" goes back to where the function call

function call was made
>>> square(5) + 4

* Function frame (and the local variables 25
inside It) are destroyed after the return *

- It a function does not have an explicit
return statement, it returns None after all
statements in the body are executed




Review:
Function Frame Model

- How about functions that call other functions?

def sum_square(a, b):

return square(a) + square(b)

* What happens when we call sum_square(5, 3)?



def sum_square(a, b):

return square(a) + square(b)

>>> sum_square(5,3)

l

sum_square(5, 3)

a 5 J b __§-J

return square(a) + square(b)

!

square(5)

X 5

BN

return x x X




def sum_square(a, b):

return square(a) + square(b)

>>> sum_square(5,3)

l

sum_square(5, 3)

a | 5] b | 3]

return squa‘ 75 |+ square(b)




def sum_square(a, b):

return square(a) + square(b)

>>> sum_square(5,3)

l

sum_square(5, 3)

a 5 b

3

return squa‘ 25 \+ square(b)

square(5)

X 5

return X x X

return

square(3)
X 3

X X

X




def sum_square(a, b):

return square(a) + square(b)

>>> sum_square(5,3)

l

sum_square(5, 3)

3 5 b 3
return squa‘ 25 \+ st 9 b)
square(5) square(3)
X 5 X 3

return| X *x X return| x * X



def sum_square(a, b):

return square(a) + square(b)

>>> sum 34 re(5,3)




Function Frame Model to
Understand count down



def count_down(n):
"'"'"Prints ints from n down to 1'"'
1f n ==
print(n)
else:
print(n)
count_down(n-1)

>>> val = count_down(5)
5
4
3
2
1
>>> val = count_down(4)

=N WP




count_down(4)

n|4

if n == 1:
print(n)
else:

=P print(n)

count_down(n-1)

count_down(3)

n|3

1if n ==
print(n)
else:

—Pp print(n)

count_down(n-1)

Base case reached!

>>> val = count _down(4

= N W b

count_down(2)

n| 2

if n ==
print(n)
else:

=P print(n)

count_down(n-1)

countDown (1)

nll

if n ==
print(n)

else:
print(n)
count_down(n-1)




count_down(4)

n|4

if n == 1:
print(n)
else:

=P print(n)

count_down(n-1)

count_down(3)

n|3

1if n ==
print(n)
else:

—Pp print(n)

count_down(n-1)

Base case reached!

>>> val = count _down(4

= N W b

count_down(2)

n| 2

if n ==
print(n)
else:

=P print(n)

count_down(n-1)

countDown (1)

n

if n 1:
print(n)

else:
print(n)

count_down(n-1)




count_down(4)

n|4a

1f n ==
print(n)
else:

=P print(n)

count_down(n-1)

count_down(3)

n|3

1if n ==
print(n)
else:

=P print(n)

count_down(n-1)

k Base case reached!
\

>>> val = count_down (4
4

3
2
1




count_down(4)

n|4a

1f n ==
print(n)
else:

=P print(n)

count_down(n-1)

k Base case reached!
\

>>> val = count_down (4
4

3
2
1



L Base case reached!
\ \\

\
>>> val = count_down(4
4

3
2
1



Recursion GOTCHAS!



GOTCHA #1

* It the problem that you are solving recursively is not getting
smaller, that Is, you are not getting closer to the base case ---

infinite recursion!

« Never reaches the base case

def count_down_gotcha(n):
"'"'"Prints ints from 1 up to n’''’
if n == 1: # Base case
print(n)
else: # Recursive case Subproblem not getting smaller!

print(n)
count_down_gotcha(n)




GOTCHA #2

»+ Missing base case/unreachable base case--- another way to

cause infinite recursion!

def print_halves_gotcha(n):

"""pPrints n, n/2, down to ... 1"""
Lt n >=.@: Always true!
print(n)

return print_halves_gotcha(n/2)




"™Maximum recursion
depth exceeded"

» In practice, the Infinite recursion examples will terminate
when Python runs out of resources for creating function
call frames, leads to a "maximum recursion depth
exceeded” error message



Recursion vs. lteration:
sum List



sum List

* Goal: Write a function to sum up a list of numbers

- Iterative approach?! (i.e., using loops!)



'terative A

D

broach to sum_L1st

Goal: Write a function to sum up a list of numbers

terative approach:

def sum_list iterative(num_1lst):

sum = 0

for num in num_1lst:
sum num

return sum

>>> sum_list_iterative(I[3, 4, 20, 12, 2, 20])

6l



sum List

* Goal: Write a function to sum up a list of numbers

- Recursive approach!?



Recursive approach to sum_ L1st

« Base case:

- num_1Llst is empty, return 0

« Recursive rule:

» Return first element of num_1st plus result from calling sum_11st
on rest of the elements of the list.

+ Example: Suppose num_1st = [6, 3, 6, 5]

* sSum

* sSum

* sSum

* sSum

list(

list(

list(

list(

6, 3, 6, 5]1) =6 + sum list([3, 6, 51)

3, 6, 5]) = 3 + sum list([6, 5])
6, 5]1) = 6 + sum list([5])

5]1) =5 + sum list([])

» For the base case we have sum_1ist([]) returns @



Recursive approach to sum_ L1st

« Base case:

- num_1Llst is empty, return 0

« Recursive rule:

» Return first element of num_1st plus result from calling sum_11st
on rest of the elements of the list.

+ Example: Suppose num_1st = [6, 3, 6, 5]

* sSum

- sum |
- sum |

- sum |

1 20

|4

6, 3, 6, 51) =6 + sum_] 14 |[3, 6, 5])

3, 6, 5]) = 3 + sum

Il £([6, 51)

6, 5]) =6 + sul 5

st([5])

5

[5]) =5 + 9 0 |ist(

[1)

» For the base case we have sum_1ist([]) returns @



Recursive approach to sum_ L1st

def sum_list(num_1lst):
"HHReturns sum of given list"""
if num_1lst == []:
return 0
else:
return num_1lst[0] + sum_list(num_T1lst[1:])

>>> sum_list([3, 4, 20, 12, 2, 201)
6l



Compare sum_ L1st approaches

Compare/Contrast:

def sum_list iterative(num_ 1lst):
sum = 0
for num in num_1lst:
sum num
return sum

def sum_list(num_1lst):
1f num_1lst []:
return 0
else:
return num_1st[0] sumList(num_T1st[1:])



Graphical Recursion

AGARA AN A
AVAvAYA AV’AVA AV‘A'A'A TAYAVAVAVAVATYAVAVAVAVAVAY

Al
PAVAN
AvA AvA A'A A
JAVAVAVAVAVAVAVAVAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY AVAVAVAN




The Turtle Module

- Jurtle 1s a graphics module first introduced in the 1960s by computer
scientists Seymour Papert, Wally Feurzig, and Cynthia Solomon.

» |t uses a programmable cursor — fondly referred to as the “turtle” — to
draw on a Cartesian plane (x and y axis.)

pen down

R



Jurtle In Python

» turtle is available as a built-in module in Python. See the
Pvthon turtle module AP for detalls.

« BRasic turtle commands:

Use turtle * 1o use these commands
fd( ) turtle moves forward by
bk ( ) turtle moves backward by
Lt ) turtle turns left degrees
rt( ) turtle turns right degrees
up () (pen up) turtle raises pen in belly
down () (pen down) turtle lowers pen from belly
shape ( ) sets the turtle's shape to
speed ( ) sets the turtle's speed (slow-fast). O skips animation.
home () turtle returns to (0,0) (center of screen)
clear() delete turtle drawings; no change to turtle's state
reset() delete turtle drawings; reset turtle's state
setup( , height) create a turtle window of given and


https://docs.python.org/3/library/turtle.html

Basic [urtle Movement

e forward(dist) or fd(dist),
left(angle) or 1t(angle),
rightCangle) or rt(angle),
backward(dist) or bk(dist)

# set up a 400x400 turtle window
setup(400, 400)
reset()

fd(100) # move the turtle forward 100 pixels
1t(90) # turn the turtle 90 degrees to the left
fd(100) # move forward another 100 pixels

# complete a square
1t(90)
fd(100)
1t(90)
fd(100)
done()




Drawing Basic Shapes With Turtle

- We can write functions that use turtle commands to draw shapes.

+  For example, here’s a function that draws a square of the desired size

def draw_square(length):
# a loop that runs 4 times

# and draws each side of the square
for i in range(4):
fd(length)
-Lt ( 9@ ) ® -0 Python Turtle Graphics

done()

setup (400, 400)

reset()
draw_square(150)




Drawing Basic Shapes With Turtle

How about drawing polygons?

def draw_polygon(length, num_sides):
for i in range(num_sides):
fd(length)
1t (360/num_sides)

AN

draw_polygon(80, 3) draw_polygon(80, 10)




Adding Color!

- What If we wanted to add some color to our shapes!

def draw_polygon_color(length, num_sides, color):
# set the color we want to fill the shape with
# color 1s a string
fillcolor(color)

begin_fill()
for i in range(num_sides):
fd(length)
1t (360/num_sides)
end_fill()
done()

draw_polygon_color(80, 10, '"gold") draw_polygon_color(80, 10, "purple")



Next [ime: Recursive Figures With [urtle

Next time we will explore how to draw recursive pictures with Turtle




