
CS134 Lecture 16:
Testing & Files

Announcements & Logistics
• No HW due tonight
• Lab 5 today/tomorrow (no prelab); due Friday noon (after midterm!)
• Midterm reminders:

• Review: Tonight 3/11 from 7-9pm

• Exam Thurs 3/14 from 6-7:30pm OR 8-9:30pm
• Both exam and review are in Bronfman Auditorium
• Exam only includes material up to last week (sets)
• Sample Exam posted! Solutions give some POSSIBLE answers (other

correct answers may exist)
• New Instructor Help Hours Schedule

• Wednesday 1-4, Thursday 1-4

Do You Have Any Questions?

https://glow.williams.edu/courses/3876190/files?preview=283724050
https://glow.williams.edu/courses/3876190/files?preview=283906258

Last Time
• Explore another new Python type:

• sets: mutable unordered collection

• Use tuples and sets in example functions

Lists, Tuples, Sets
Lists

• list(), []

• Mutable

• Ordered

• Store any type, even
a list

• Dynamic datasets

• Indexing, slicing, len,
in & not in, iteration
in for loop

Tuples

• tuple(), ()

• Immutable

• Ordered

• Store any type, even
a tuple

• Static ordered
collections

• Indexing, slicing, len,
in & not in, iteration
in for loop

Sets

• set()

• Mutable

• Unordered

• Immutable types, no
duplicates

• Unordered
collections

• No indexing/slicing

• len, in & not in,
iteration in for loop

Finish Set Example From Class:

Using set to implement get_candidates()

Today's Plan
• Discuss testing and debugging strategies (more on this in Lab 5)

• Start discussion on how to read from and iterate over files

• Tuple example to solve Madlibs problem

Testing and Debugging

Testing vs Debugging
• Testing: Ensuring that your code meets the specifications

• Has the correct (expected) behavior on all inputs

• Debugging: Process of finding and fixing bugs in your code

• These can be syntax errors, runtime errors, logical errors

• As part of testing overall

Types of Errors
• Syntax errors: Occurs when the code does not follow Python

syntax rules

• E.g., Missing colon after function definitions or if statements

• Indentation issues

• Runtime errors: Occur when functions are invoked and variables
are replaced by their values at runtime

• E.g., divide by zero

• Logical errors: Occur due to mistakes in logic while implementing
the functionality

How to Approach Debugging
• read the Python error messages

• tell you line numbers and program trace

• print statements!

• rubber duck debugging

Example Program Debugging
• debugging.py implements a "simple" sorting algorithm (it's

actually complex code, but there are even more complex ways to
sort a list).

• The sorting algorithm is correct, but it doesn't work!
• Sorting strategy:

• Find the smallest element in the list
• Swap that element with the first element in the list

• Now the list has one element in it's final location!

• Repeat for list[1:], then list[2:], and so on...

debugging.py

Testing So Far In Lab
• We have already seen two ways to test a function

• You can run your code 1) interactively or 2) as a script
• We've also seen how to import functions we wrote in one file, into a

separate testing file (like runtests.py)

• This is still running code as a script!

• There are also more automated ways to run these tests (which is what
we do in this class for the 90+ weekly labs!)

runtests.py

runtests.py
• We always provide some tests for you in runtests.py
• The Lab Instructions often suggest additional tests to run in interactive

python
• As a computer scientist, you should always be thinking of so-called

edge cases that may break your code
• Stress test!
• ...but how might we do that?

runtests.py
• runtests.py typically has ~5 sections:

• imports, datasets, our tests, your tests, and the test runner

• Imports: makes the functions we wrote in other files usable in this one

• Datasets: loads-in some handy datasets for testing the code

• Our Tests: Some basic tests we provide to see if your functions have
minimal functionality

• Your Tests: A place where you should add your own tests, for ensuring
maximal functionality

• Test Runner: Gathers command-line input (e.g., 'q2') and runs the tests
specified in the body

runtests.py
• To add your own tests: copy a similar example from our tests into the

function body, update the parameters and print statements.

• If you're using a function header already provided in the .py file, then
this function will run!

def my_first_choice_votes_test():
 # Replace the following line with your own test!
 print("YOU HAVEN'T YET WRITTEN YOUR OWN TEST FOR first_choice_votes!")

def my_first_choice_votes_test():
 result = first_choice_votes(aamir_beth_chris_ballots())
 print("first_choice_votes(aamir_beth_chris_ballots())")
 print(" should return: ['Aamir', 'Beth', 'Chris', 'Aamir']")
 print(" yours returned: " + str(result))

runtests.py
• If you've made a brand new function with a new name, you'll need to make

sure that function is called in the Test Runner

• Good individual (unit) tests often focus on one aspect of your code
• Comprehensive test suites should include many individual tests and

combinations

if __name__ == "__main__":
 args = get_command_line_args()
 if len(args) == 0: # if there are no command-line arguments
 print("Please specify the question: q1, q2, q3, q4, q5, q6, q7, q8, q9")
 else:
 which_question = args[0] # reads the first command-line argument
 if which_question == "q1":
 first_choice_votes_test1()
 first_choice_votes_test2()
 my_first_choice_votes_test()

Reading Data from Files

Working with Files in Python
• File I/O is a very common and important operation

• open(filename) is a built-in Python function for working with files

• filename is a path to a file as a string

• Using open() within a with … as code block, we can iterate over the lines
of a text file just as we iterated over strings and lists in previous lectures

Opening Files: with … as

with open(filename) as input_file:

do something with file

Note. (syntax) Indentation defines the body of the
with block where the file is open. File automatically

closed after with…as block.

Path to file on computer as a string

Variable name for your file

files-plotting.ipynb

with open("data/mountains.txt") as book:
 for line in book:
 print(line)

Iterating over Lines in a File
• Within a with open(filename) as input_file: block, we can

iterate over the lines in the file just as we would iterate over any sequence
such as lists, strings, or ranges

• The end of a line in the text file is determined by the special newline
character '\n'

• Example: We have a text file mountains.txt within a directory data.
We can iterate and print each line as follows:

Variable name for your file

O, proudly rise the monarchs of our mountain land,

With their kingly forest robes, to the sky,

Where Alma Mater dwelleth with her chosen band,

And the peaceful river floweth gently by.

Path to file on computer as a string

'\n' between each line

with open("data/mountains.txt") as book:
 result = []
 for line in book:
 result += [line]
 print(result)

Iterating over Lines in a File
• Because the end of the line in a file is a newline character '\n' and

when we print(a_string) a newline character is added to the
end...we end up with an empty newline between each printed line!

['O, proudly rise the monarchs of our mountain land,\n',
 'With their kingly forest robes, to the sky,\n',
 'Where Alma Mater dwelleth with her chosen band,\n',
 'And the peaceful river floweth gently by.\n']

Removing Leading/Trailing Whitespace from a String

• Because the end of the line in a file is a newline character '\n' and
when we print(a_string) a newline character is added to the
end...we end up with an empty newline between each printed line!

• Let's write a function that will remove leading and trailing whitespaces.

>>> len('\n')
1

'\n' is one character! The backslash escapes the character.

s = '\n \t String with\t different\nspaces.\r\n\t'

spaces = ['\n', '\t', '\r', ' ']

'\n' newline '\t' newline '\r' return

Removing Leading/Trailing Whitespace from a String

• Let's write a function that will remove leading and trailing whitespaces.
def strip(line):
 # handle empty line somehow

 # return line?
 spaces = ['\n', '\t', '\r', ' ']

 # find where the words start
 # look at each character
 # if it's a space...keep looking
 # keep track of indices looked at

 # find where the word ends
 # look at each character in reverse
 # if it's a space...keep looking
 # keep track of indices looked at

 # return the string between the start and end index

Removing Leading/Trailing Whitespace from a String

• Let's write a function that will remove leading and trailing whitespaces.
def strip(line):
 if not line: # handle empty line
 return line
 spaces = ['\n', '\t', '\r', ' ']

 # find the first not-space
 start_index = 0
 while start_index<len(line) and line[start_index] in spaces:
 start_index += 1

 # find the last not-space
 end_index = len(line)-1
 while end_index>0 and line[end_index] in spaces:
 end_index -= 1

 return line[start_index:end_index+1]

>>> s = '\n \t String with\t different\nspaces.\r\n\t'
>>> strip(s)
'String with\t different\nspaces.'

Useful String and List Functions in File Reading

• When reading files, we may need to use some common string and list
operations to work with the data.

• We'll learn about the built-in features python has for these later in the semester,
but we can write our own with iterating over strings and accumulator variables!

• strip(line): Remove any leading/trailing white space or “\n”

• split(line, ','): Separate a comma-separated sequence of
words and create a list of strings

• join(' ', lines): Create a single “big” string with words separated
by spaces instead of commas

• count_appearances(ele, let): Count the occurrence of
various elements

• …and so on!

