CSI 34 Lecture 15:

Tuples and Set Examples

Announcements \& Logistics

- No HW due next Monday
- Midterm reminders:
- Review: Monday 3/II| from 7-9pm
- Exam Thurs 3/II from 6-7:30pm OR 8-9:30pm
- Both exam and review are in Bronfman Auditorium
- Exam only includes material up to this week
- Sample Exam posted!
- New Instructor Help Hours Schedule
- Wednesday I-4, Thursday I-4

Do You Have Any Questions?

Last Time: Aliasing

- Describe how scope works when lists are passed as function parameters (interaction between scope and aliasing)
- Explore two new Python types:
- tuples: immutable ordered alternative to lists
- sets: mutable unordered collection (if time permits)

Today's Plan

- Finish up presentation of sets
- Write some code together (using tuples and sets) to solve familiar problems.

Sets

New Unordered Data Structure: Sets

- Sets are mutable, unordered collections of immutable objects
- Sets can change (e.g., we can add and remove items), but an item cannot be changed once the item is added to the set
- Sets are written as comma separated values between curly braces \{ \}
- Elements in a set must be unique and immutable
- Sets can be an effective way of eliminating duplicate values
>>> nums $=\{42,17,8,57,23\}$
>>> flowers = \{"tulips", "daffodils", "asters", "daisies"\}
>>> empty_set $=$ set() \# empty set

New Unordered Data Structure: Sets

- Question: What is the potential downside of removing duplicates w/sets?

```
>>> first_choice = {'a', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(first_choice)
>>> uniques
# ???
>>> set("aabrakadabra")
# ???
```


New Unordered Data Structure: Sets

- Question: What is the potential downside of removing duplicates w/sets?
- Might lose the ordering of elements
>>> first_choice = \{'a', 'b', 'a', 'a', 'b', 'c'\}
>>> uniques = set(first_choice)
>>> uniques
\{'a', 'b', 'c'\}
>>> set("aabrakadabra")
\{'a', 'b', 'd', 'k', 'r'\}

Sets: Creating New Sets

- There are two ways to create a new set:
- By placing curly brackets around elements:

$$
\begin{aligned}
& \text { >>> set_brack = \{'aardvark'\} } \\
& \text { >>> set_brack }
\end{aligned}
$$

\{'aardvark'\}

- By converting an iterable collection into a set:

$$
\begin{aligned}
& \text { >>> set_func = set('aardvark') } \\
& \text { >>> set_func } \\
& \{' d ', ~ ' v ', ~ ' a ', ~ ' r ', ~ ' k '\} ~
\end{aligned}
$$

- And only one way to create an empty set:

Why letters here instead of the word?

Strings are iterable collection!

$$
\begin{aligned}
& \text { >>> empty_set = set() } \\
& \text { >>> empty_set } \\
& \text { set() }
\end{aligned}
$$

Sets: Membership and Iteration

- Can check membership in a set using in, not in
- Can check length of a set using len ()
- Can iterate over values in a loop (order will be arbitrary)
>>> nums = \{42, 17, 8, 57, 23\}
>>> flowers = \{"tulips", "daffodils", "asters", "daisies"\}
>>> 16 in nums
False
>>> "asters" in flowers
True
>>> len(flowers)
4
>>> \# iterable
>>> for f in flowers:
>>> ... print(f)
tulips
daisies daffodils asters

Sets are Unordered

- Therefore we cannot:
- Index into a set (no notion of "position")
- Concatenate (+) two sets (concatenation implies ordering)
- Create a set of mutable objects:
- Such as lists, sets, and dictionaries (foreshadowing...)
>>> $\{[3,2],[1,5,4]\}$
TypeError
----> 1 \{[3, 2], [1, 5, 4]\}
TypeError: unhashable type: 'list'

Set Operations

- The usual operations you think of in set theory are implemented as follows

The following operations always return a new set.

- s1 | s2 (Set Union)
- Returns a new set that has all elements that are either in s1 or s2
- s1 \& s2 (Set Intersection)
- Returns a new set that has all the elements that are common to both sets.
- s1 - s2 (Set Difference)
- Returns a new set that has all the elements of s1 that are not in s2
- s1 |= s2,s1 \&= s2,s1 -= s2 are versions of $\mid, \&,-$ that mutate s 1 to become the result of the operation on the two sets.

Set Operations

>>> cs134_dogs = \{"wally", "pixel", "linus", "chelsea", "sally", "artie"\}

>>> peanuts = \{"sally", "linus", "charlie", "franklin", "lucy", "patty"\}

Set Operations

```
>>> cs134_dogs = \{"wally", "pixel", "linus", "chelsea", "sally", "artie"\}
>>> peanuts = \{"sally", "linus", "charlie", "franklin", "lucy", "patty"\}
>>> union = cs134_dogs | peanuts
>>> union
\{'sally', 'wally', 'patty', 'chelsea', 'pixel',
    'franklin', 'lucy', 'artie', 'linus', 'charlie'\}
>>> intersect = cs134_dogs \& peanuts
>>> intersect
\{'sally', 'linus'\}
>>> diff = cs134_dogs - peanuts
>>> diff
\{'chelsea', 'artie', 'wally', 'pixel'\}
>>> cs134_dogs
\{'sally', 'wally', 'linus', 'artie', 'chelsea', 'pixel'\}
Original set is unchanged!
```


Set Operations: Mutators

>>> cs134_dogs = \{"wally", "pixel", "linus", "chelsea", "sally", "artie"\} >>> peanuts = \{"sally", "linus", "charlie", "franklin", "lucy", "patty"\}
>>> cs134_dogs |= peanuts
>>> cs134_dogs Original set is mutated!
\{'sally', 'wally', 'patty', 'chelsea', 'pixel',
'franklin', 'lucy', 'artie', 'linus', 'charlie'\}
>>> cs134_dogs = \{"wally", "pixel", "linus", "chelsea", "sally", "artie"\}
>>> cs134_dogs \&= peanuts
>>> cs134_dogs Original set is mutated!
\{'sally', 'linus'\}
>>> cs134_dogs = \{"wally", "pixel", "linus", "chelsea", "sally", "artie"\}
>>> cs134_dogs -= peanuts
>>> cs134_dogs Original set is mutated!
\{'wally', 'artie', 'chelsea', 'pixel'\}

Set Operations

- The usual operations you think of in set theory are implemented as follows

The following operations always return a new set.

- s1 | s2 (Set Union)
- Returns a new set that has all elements that are either in s1 or s2
- s1 \& s2 (Set Intersection)
- Returns a new set that has all the elements that are common to both sets.
- s1 - s2 (Set Difference)
- Returns a new set that has all the elements of s1 that are not in s2
- s1 |= s2,s1 \&= s2,s1 -= s2 are versions of $\mid, \&,-$ that mutate s 1 to become the result of the operation on the two sets.

Set Examples (live coding)

voting.py

Tuple Examples (live coding)

