
CS134 Lecture 15:
Tuples and Set Examples

Announcements & Logistics
• No HW due next Monday
• Midterm reminders:

• Review: Monday 3/11 from 7-9pm

• Exam Thurs 3/14 from 6-7:30pm OR 8-9:30pm
• Both exam and review are in Bronfman Auditorium
• Exam only includes material up to this week
• Sample Exam posted!

• New Instructor Help Hours Schedule
• Wednesday 1-4, Thursday 1-4

Do You Have Any Questions?

https://glow.williams.edu/courses/3876190/files?preview=283724050

Last Time: Aliasing
• Describe how scope works when lists are passed as function parameters

(interaction between scope and aliasing)

• Explore two new Python types:

• tuples: immutable ordered alternative to lists

• sets: mutable unordered collection (if time permits)

Today's Plan
• Finish up presentation of sets

• Write some code together (using tuples and sets) to solve familiar
problems.

Sets

New Unordered Data Structure: Sets
• Sets are mutable, unordered collections of immutable objects

• Sets can change (e.g., we can add and remove items), but an item
cannot be changed once the item is added to the set

• Sets are written as comma separated values between curly braces { }
• Elements in a set must be unique and immutable

• Sets can be an effective way of eliminating duplicate values

>>> nums = {42, 17, 8, 57, 23}
>>> flowers = {"tulips", "daffodils", "asters", "daisies"}
>>> empty_set = set() # empty set

New Unordered Data Structure: Sets
• Question: What is the potential downside of removing duplicates w/sets?

>>> first_choice = {'a', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(first_choice)
>>> uniques
???
>>> set("aabrakadabra")
???

New Unordered Data Structure: Sets
• Question: What is the potential downside of removing duplicates w/sets?

• Might lose the ordering of elements

>>> first_choice = {'a', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(first_choice)
>>> uniques

>>> set("aabrakadabra")
{'a', 'b', 'c'}

{'a', 'b', 'd', 'k', 'r'}

Sets: Creating New Sets
• There are two ways to create a new set:

• By placing curly brackets around elements:

• By converting an iterable collection into a set:

• And only one way to create an empty set:

>>> set_func = set('aardvark')
>>> set_func
{'d', 'v', 'a', 'r', 'k'}

>>> set_brack = {'aardvark'}
>>> set_brack
{'aardvark'}

Why letters here instead
of the word?

>>> empty_set = set()
>>> empty_set
set()

Strings are iterable collection!

• Can check membership in a set using in, not in
• Can check length of a set using len()
• Can iterate over values in a loop (order will be arbitrary)

>>> nums = {42, 17, 8, 57, 23}
>>> flowers = {"tulips", "daffodils", "asters", "daisies"}
>>> 16 in nums
False
>>> "asters" in flowers
True
>>> len(flowers)
4
>>> # iterable
>>> for f in flowers:
>>> ... print(f)

Sets: Membership and Iteration

tulips
daisies
daffodils
asters

Sets are Unordered
• Therefore we cannot:

• Index into a set (no notion of “position”)
• Concatenate (+) two sets (concatenation implies ordering)
• Create a set of mutable objects:

• Such as lists, sets, and dictionaries (foreshadowing...)

>>> {[3, 2], [1, 5, 4]}
TypeError
----> 1 {[3, 2], [1, 5, 4]}

TypeError: unhashable type: 'list'

Set Operations
• The usual operations you think of in set theory are implemented as follows

The following operations always return a new set.

• s1 | s2 (Set Union)

• Returns a new set that has all elements that are either in s1 or s2

• s1 & s2 (Set Intersection)

• Returns a new set that has all the elements that are common to both sets.

• s1 - s2 (Set Difference)

• Returns a new set that has all the elements of s1 that are not in s2

• s1 |= s2, s1 &= s2, s1 -= s2 are versions of |, &, - that mutate
s1 to become the result of the operation on the two sets.

Set Operations
>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}

>>> peanuts = {"sally", "linus", "charlie", "franklin", "lucy", "patty"}

Set Operations
>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> peanuts = {"sally", "linus", "charlie", "franklin", "lucy", "patty"}

>>> union = cs134_dogs | peanuts
>>> union
{'sally', 'wally', 'patty', 'chelsea', 'pixel',
'franklin', 'lucy', 'artie', 'linus', 'charlie'}

>>> intersect = cs134_dogs & peanuts
>>> intersect
{'sally', 'linus'}

>>> diff = cs134_dogs - peanuts
>>> diff
{'chelsea', 'artie', 'wally', 'pixel'}

>>> cs134_dogs
{'sally', 'wally', 'linus', 'artie', 'chelsea', 'pixel'}

Original set is unchanged!

Set Operations: Mutators
>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> peanuts = {"sally", "linus", "charlie", "franklin", "lucy", "patty"}

>>> cs134_dogs |= peanuts
>>> cs134_dogs
{'sally', 'wally', 'patty', 'chelsea', 'pixel',
'franklin', 'lucy', 'artie', 'linus', 'charlie'}

>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> cs134_dogs &= peanuts
>>> cs134_dogs
{'sally', 'linus'}

>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> cs134_dogs -= peanuts
>>> cs134_dogs
{'wally', 'artie', 'chelsea', 'pixel'}

Original set is mutated!

Original set is mutated!

Original set is mutated!

Set Operations
• The usual operations you think of in set theory are implemented as follows

The following operations always return a new set.

• s1 | s2 (Set Union)

• Returns a new set that has all elements that are either in s1 or s2

• s1 & s2 (Set Intersection)

• Returns a new set that has all the elements that are common to both sets.

• s1 - s2 (Set Difference)

• Returns a new set that has all the elements of s1 that are not in s2

• s1 |= s2, s1 &= s2, s1 -= s2 are versions of |, &, - that mutate
s1 to become the result of the operation on the two sets.

Set Examples
(live coding)

voting.py

Tuple Examples
(live coding)

madlibs.py

