CS|
Tu

34 Lect

ure |4

dles anc

Sets

Announcements & Logistics

HW 6 will be released today and due Mon @ 10 pm

Short HW (only 5 questions)

Covers topics this week (mutability, aliasing, scope, tuples, sets)
Lab 4 Part 2 due VWednesday/Thursday |0pm
Midterm reminders:

Review: from /-9pm

Exam from 6-7:30pm OR 8-9:30pm

Both exam and review are in Bronfman Auditorium

Exam only includes material up to HW 6

Do You Have Any Questions!?

Last [ime: Aliasing

» Scope: variables, functions, objects have limited accessibility/visibility.

- Understanding how this works helps us make decisions about where

to define variables/functions/objects

/

Goal was to demystify surprising behavior:
nothing In computer science 1s magic!

Jloday's Plan

Describe how scope works when lists are passed as function parameters
(interaction between scope and aliasing)

Explore two new Python types:
- tuples: ordered alternative to lists

- sets: unordered collection (if time permits)

Review: Scope Example from Lecture 4

def my_func (1lst):

Lst.append(1) # same effect as lst += [1]
print('local lst', 1lst)
return lst

st = [3] global frame

new_1lst = my_func(lst)
print('global lst', 1st)

print('new _1lst', new_1lst) ¢ .SHE
my_tunc _aJE

>>> python3 example.py |l

Review: Scope Example from Lecture 4

def my_func (1lst):

Lst.append(1) # same effect as lst += [1]
print('local lst', 1lst)
return lst

st = [3] global frame

new_1lst = my_func(lst)
print('global lst', 1st)

print('new _1lst', new_1lst) ¢ .SHE
my_tunc _aJE

>>> python3 example.py

st [3]

Review: Scope Example from Lecture 4

def my_func (1lst):

Lst.append(1) # same effect as lst += [1]
print('local lst', 1lst)
return lst

st = [3] global frame

new_1lst = my_func(lst)

| my_func() frame
print('global lst', 1st)

print('new _1lst', new_1lst) ¢ .SHE
my_tunc _aJE

lst |?

>>> python3 example.py

st [3] /

new_1Lst

Review: Scope Example from Lecture 4

def my_func (1lst):

Lst.append(1) # same effect as lst += [1]
print('local lst', 1lst)
return lst

st = [3] global frame

new_1lst = my_func(lst)
print('global lst', 1st)

my_func() frame

rint('new 1lst', new 1lst) <N B)
¥ - - my_func = lst |alias

>>> python3 example.py 1<t [3] AT/

new_1Lst

Review: Scope Example from Lecture 4

def my_func (1lst):

Lst.append(1) # same effect as lst += [1]
print('local lst', 1lst)
return lst

st = [3] global frame

new_1lst = my_func(lst)
print('global lst', 1st)

my_func() frame

rint('new 1lst', new 1lst) <N B)
¥ - - my_func = lst |alias

>>> python3 example.py
ocal Ist [3, 1] Lst Eﬁlﬂ/

new_1Lst

Review: Scope Example from Lecture 4

def my_func (1lst):
Lst.append(1) # same effect as lst += [1]
print('local lst', 1lst)
return Llst

st = [3] global frame

new_1lst = my_func(lst)
print('global lst', 1st)

print('new _1lst', new_1lst) .Sng
my_func -

>>> python3 example.py 1°
local Ist [3, 1] st 3, 1:1‘T

new_1Lst

Review: Scope Example from Lecture 4

def my_func (1lst):
Lst.append(1) # same effect as lst += [1]
print('local lst', 1lst)
return Llst

st = [3] global frame

new_1lst = my_func(lst)
print('global lst', 1st)

print('new _1lst', new_1lst) .Sng
my_func -

>>> python3 example.py
ocal st [3, 1] Lst [3,1]

new_lst |alias

Review: Scope Example from Lecture 4

def my_func (1lst):
Lst.append(1) # same effect as lst += [1]
print('local lst', 1lst)
return Llst

st = [3] global frame

new_1lst = my_func(lst)
print('global lst', 1lst)

print('new _1lst', new_1lst) .Sng
my_func -

>>> python3 example.py
ocal st [3, 1] Lst [3,1]

slobal Ist [3, 1] =

new_lst |alias

Review: Scope Example from Lecture 4

def my_func (1lst):
Lst.append(1) # same effect as lst += [1]
print('local lst', 1lst)
return Llst

st = [3] global frame

new_1lst = my_func(lst)
print('global lst', 1st)

print('new _1lst', new_1lst) .Sng
my_func -

>>> python3 example.py
ocal st [3, 1] Lst [3,1]

slobal Ist [3, 1] =
new_lIst [3, |] !
new_lst |alias

Review: Scope Example from Lecture 4

def my_func (1lst):
Lst.append(1) # same effect as lst += [1]
print('local lst', 1lst)
return Llst

st = [3] global frame

new_1lst = my_func(lst)
print('global lst', 1st)

print('new _1lst', new_1lst) ¢ 'SHE__

$ python3 example.py
local Ist [3, 1] Lst [3,1]

slobal Ist [3, |] A
new_Ist [3, |] :
g new_lst |alias

Allasing and Scope

VWhen we pass a mutable object as a parameter to a function, within
the function, that local parameter variable is an alias

Since a list 1s mutable, changes to the alias affect the original!

When we pass an immutable object as a parameter to a function,
within the function, that local parameter variable is a clone

Wouldn't it be nice to have an iImmutable form of a list?

luples

Tuples: An Immutable Sequence

Tuples are an immutable sequence of values (almost like iImmutable
lists) separated by commas and enclosed within parentheses ()

string tuple
>>> names = ("Bill", "Lida", "Shikha")

1nt tuple
>>> primes = (2, 3, 5, 7, 11)

S lng leton A tuple of size one is called a singleton.
>>> num = (5 ,) Note the (funky) syntax.

parentheses are optional
>>> values = 5, 6

empty tuple
>>> emp = ()

Tu

dles as Immutable Sec

UENCES

Tuples, like strings, support any sequence operation that does not

involve mutation: e.g,

Llen() function: returns number of elements in tuple

[]

+,

[:]

indexing: access specific element

*: tuple concatenation

slicing to return subset of a tuple (as a new tuple)

1n and not 1n: check membership of an object in a tuple

for—loops: iterate over elements in tuple

Multl

h—l

- and Un

ble Assishnmen

backing

Tuples support a simple syntax for assigning multiple values at once, and
also for "unpacking” sequence values

>>>a, b =4, 7 # after evaluating: a

reverse the order of values in tuple

>>> b, a=a, b

4, b ==

tuple assignment to “unpack” list elements

>>> cb_info = ['Charlie Brown', 8, False]

>>> name, age, glasses = cb_info

Note that the preceding line Is just a more compact way of writing:

>>> name = cb_info[0]

>>> age = cb_info[1]

>>> glasses = cb_info[2]

Multiple Return from Functions

Tuples come In handy when returning multiple values from functions

multiple return values as a tuple

def arithmetic(numl, num2):
'''"Takes two numbers and returns their sum and product'''’
return numl + num2, numl * num2

>>> agrithmetic(10, 2)
(12, 20)
>>> type(arithmetic(3, 4))

<class 'tuple'>

Conversion between Sequences

- The functions tuple(), list(),and str() convert between sequences
>>> word = "Williamstown"
>>> char_lst = list(word) # string to list

>>> char_Llst

['W', 'i', '1', '1', 'i', 'a', 'm', IS', 't', IO', IW', 'n']
>>> char_tuple = tuple(char_1lst) # list to tuple

>>> char_tuple

('W', 'i', '1', '1.', 'i', 'a', 'm', 'S', 't', IO', IW', '‘n')
>>> list((1, 2, 3, 4, 5)) # tuple to list

[1, 2, 3, 4, 5]

Conversion between Sequences

+ The functions tuple(), list(),and str() convert between sequences
>>> str(('hello', 'world')) # tuple to string
"('hello', 'world')"

>>> num_range = range(12)

>>> list(num_range) # range to list

¢, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

>>> str(list(num_range)) # range to list to string
‘'{e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]'

[akeaways

 Tuples are a new sequence that:
- support all sequence operations such as indexing and slicing
- are useful for argument unpacking, multiple assignments

- are useful for handling list-like data without aliasing issues

Sets

New Unordered Data Structure: Sets

- Lists are collections of objects

- What if we only need an unordered collection of individual items?
- We can use a new data structure: sets

- Sets are mutable, unordered collections of immutable objects

» Sets can change (e.g., we can add and remove items), but an item
cannot be changed once the item Is added to the set

- Sets are written as comma separated values between curly braces { }

* Elements in a set must be and immutable
» Sets can be an effective way of eliminating duplicate values

>>> nums = {42, 17, 8, 57, 23}
>>> flowers = {"tulips"”, "daffodils", "asters", "daisies"}
>>> empty_set = set() # empty set

New Unordered Data Structure: Sets

- Question: What Is the potential downside of removing duplicates w/sets?

>>> first_choice = {'a’', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(first_choice)

>>> uniques

777

>>> set("aabrakadabra™)
777

New Unordered Data Structure: Sets

- Question: What Is the potential downside of removing duplicates w/sets?

- Might lose the ordering of elements

>>> first_choice = {'a', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(first_choice)

>>> uniques

t'a’, 'b', 'c'}

>>> set("aabrakadabra)

{'a’, 'b', 'd', k', 'r'}

Sets: Creating New Sets

- [here are two ways to create a new set:

» By placing curly brackets around elements:

>>> set_brack = {'aardvark'}

>>> set_brack
{"aardvark'}

» By converting an rterable collection into a set:

>>> set_func = set('aardvark') Why letters here instead
>>> set_func of the word?
{'d', 'V', 'a', 'r", 'k'}

Strings are iterable collection!
- And only one way to create an empty set: 5

>>> empty_set = set()
>>> empty_set
set()

Sets: Membership and [teration

» Can check membership in a set using 1n,not 1n

» Can check length of a set using Llen ()

- (Can rterate over values in a loop (order will be arbitrary)

>>> nums = {42, 17, 8, 57, 23}

>>> flowers = {"tulips", "daffodils", "asters", "daisies"}
>>> 16 1n nums

False

>>> "asters" 1in flowers

True

>>> len(flowers)

4

>>> # 1terable

>>> for f in flowers: .

>>> ... print(f) tulips
daisies
daffodils
asters

Sets are Unorderec

* Therefore we cannot:

» Index into a set (no notion of “position”)
» Concatenate (+) two sets (concatenation implies ordering)
- Create a set of mutable objects:

» Such as lists, sets, and dictionaries (foreshadowing...)
>>> {[3, 2], [1, 5, 4]}

TypeError
----> 1 {[39 Z]) [13 53 4]}

TypeError: unhashable type: 'list'

Set Operations

» The usual operations you think of in set theory are implemented as follows
The following operations always return a hew set.
»+ S1 | s2 (Set Union)
Returns a new set that has all elements that are either in S1 or s2
sl & s2 (Set Intersection)
- Returns a new set that has all the elements that are common to both sets.
sl — s2 (Set Difference)
Returns a new set that has all the elements of S1 that are not in S2

sl |= s2,51 &= s2,51 —= s2areversionsof |, &, — that mutate
S1 to become the result of the operation on the two sets.

Set Operations

>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}

Set Operations

>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> peanuts = {"sally", "linus", "charlie", "franklin", "Tlucy", "patty"}

>>> union = csl1l34_dogs | peanuts

>>> Union

{'sally', 'wally', 'patty', 'chelsea', 'pixel',
'franklin', 'lucy', ‘'artie', 'linus', 'charlie'}

>>> 1ntersect = cs134_dogs & peanuts
>>> 1ntersect
{'sally', 'linus'}

>>> diff = csl1l34_dogs - peanuts
>>> diff

{'chelsea', 'artie', 'wally', 'pixel'}

>>> cs134_dogs Original set is unchanged!
{'sally', 'wally', 'linus', 'artie', 'chelsea', 'pixel'}

Set Operations: Mutators

>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> peanuts = {"sally", "linus", "charlie", "franklin", "Tlucy", "patty"}

>>> €S134_dogs |= peanuts

>>> €S134_dogs Original set is mutated!

{'sally', 'wally', 'patty', 'chelsea', 'pixel',
'franklin', 'lucy', ‘'artie', 'linus', 'charlie'}

>>> cs134_dogs = {"wally", "pixel", "linus", "chelsea", "sally", "artie"}
>>> cs134_dogs &= peanuts

>>> €s134_dogs Original set is mutated!
{'sally', 'linus'}

>>> ¢s134_dogs = {"wally", "pixel", "linus", '"chelsea", "sally", "artie"}
>>> cs134_dogs -= peanuts

>>> €S134_dogs Original set is mutated!

{'wally', 'artie', 'chelsea', 'pixel'}

Set Operations

» The usual operations you think of in set theory are implemented as follows
The following operations always return a hew set.
»+ S1 | s2 (Set Union)
Returns a new set that has all elements that are either in S1 or s2
sl & s2 (Set Intersection)
- Returns a new set that has all the elements that are common to both sets.
sl — s2 (Set Difference)
Returns a new set that has all the elements of S1 that are not in S2

sl |= s2,51 &= s2,51 —= s2areversionsof |, &, — that mutate
S1 to become the result of the operation on the two sets.

Set Examples
(live coding)

