CS 134 Lecture |1
While Loops & Mutabllity

Announcements & Logistics

HW 5 will be released today on GLOW
Lab 4 Part | due Wed/Thurs 10 pm

We will return feedback (including tests not found in runtests.py)

Reminder that Midterm 1s Thursday March 14
Two exam slots: 6-7.30 pm, 8-9.30 pm
Room: Bronfman auditorium
Midterm review Monday March | | evening /-9 pm in Bronfman Auditorium
How to study: review lectures
Practice past HW and labs (using pencil and paper)

Additional POGIL worksheets posted on course website (resources)

Do You Have Any Questions?

http://cs.williams.edu/~cs134/pogils/pogils.html
http://cs.williams.edu/~cs134/resources.html

L ast [Ime

Wrap upped up OSCAR example (more for loops and nested lists)
Introduced list comprehensions
Short-hand expressions for common looping patterns

 Anything you can do with a list comprehension can be done using
the techniques we've discussed so far; very "Pythonic" idiom

Jloday's Plan

New Iteration statement: the loop

Discuss the mutabllity of different data types and the implications

When you don't know when to stop
(ahead of time):

While Loop

Story so far: for loops

» Python for loops are used to iterate over a fixed sequence
- No need to know the sequence's length ahead of time
- Interpretation of for loops in Python:
for thing in things:

(do something with thing)

» Other programming languages (like Java) have for loops that require you

to explicitly specify the length of the sequence or a stopping condition

» Thus Python for loops are sometimes called “for each’ loops

- Takeaway: For loops in Python are meant to iterate directly over each

item of a given iterable object (such as a sequence)

What it We Don't Know When to Stop?

+ We always know the stopping condition of a for loop: when there are no
more elements in the sequence

[llAll, "Ch-i_-l_-l_y", "autumn", lldayH]

- Are there contexts where we don't know when to stop a loop!?

* Suppose you want to play a "guessing game" where a user
repeatedly guesses numbers until they correctly guess the secret
number

How many times should the loop execute!
Under what condition should the loop end!

The While Loop

A wh1le loop executes the loop body 0 or more times, stopping once

the loop condition evaluates to False:

while <boolean expression>:
<loop body>
<loop body>

Stopping condition

while False: while True:
print("never enters") print("never leaves")

Loop body never executes "Infinite" loop!

While Loop Example

» Example of awhile loop that depends on user input:

prompt = "Please enter a name (type quit to exit): "
name = input(prompt)
Stopping condition
while (name != "quit"):
print("Hi,", name)
name = input(prompt)
print ("Goodbye")

While Loop Example: Print Halves

* Given a number, print all the positive “halves’: keep dividing n by 2
and printing the quotient until it becomes smaller than O

def print_halves(n):
while n > 0:
print(n) 100

n n//2 50
25

print_halves(100) _> 12

While Loop to Print Halves

* Given a number, print all the positive “halves’: keep dividing n by 2
and printing the quotient until it becomes smaller than O

What does this do?
def print_halves(n): def print_halves2(n):
while n > 0: while n > 0:
print(n) 100 print(n)
n n//2 50 n n/2
25
print_halves(100) —’ 12 print_halves2(100)
o
3
1

While Loo

b to Print Halves

* Given a number, print all the positive “halves’: keep dividing n by 2

and printing the quotient until it becomes smaller than O

def print_halves(n):
while n > 0:
print(n)
n n//2

print_halves(100) _> 12

100
50
25

def print_halves2(n):
while n > 0:
print(n)

n = n/2

print_halv :s2(100)

Float division!
Be careful!

While Loop to Print Halves

* Given a number, print all the positive “halves’: keep dividing n by 2
and printing the quotient until it becomes smaller than O

What about this loop?

def print_halves(n): def print_halves3(n):
while n > 0: while n > 0:
print(n) 100 print(n)
n n//2 >0 n n//2
25
print_halves(100) —’ 12 print_halves3(100)
6
3
1

While Loop to Print Halves

* Given a number, print all the positive “halves’: keep dividing n by 2

and printing the quotient until it becomes smaller than O

def print_halves(n):
while n > 0:
print(n)
n n//2

print_halves(100) —’

100
50
25
12

def print_halves3(n):
while n > 0:
print(n)
n n//2

prin’ _halves3(100)

Another infinite loop!
Indentation matters!

whille anc

1f boolean_expresion:
statement 1
statement 2

end of 1f

Execute body once if the boolean
expression evaluates to true

1T side by side

while boolean_expresion:
statement 1
statement 2

end of while

Keep executing body as long as
the boolean expression (continues)
to evaluate to true

Side by Side: for and while loops

lteration steps are implicit in a Python
for loop: 1 takes on values O, I, 2, 3,4

for i in range(5):
print('$" % 1)

Explicitly initialize variable

Test stopping condition

i=20

while 1 < 5:
print('$" % 1)
1 +=1

Update value of variable
used In test condition

Common while loops steps that we explicitly write:

Initialize a variable used In the test condition
Test condition that causes the loop to end when False
Within the loop body, update the variable used in the test condition

Breaking out of loops

* Stopping condition of for loop: no more elements in sequence

- What if we want to stop our iteration early: how did we handle this?
» return (or, less ideally, break)

- Let's examine an example: index_of(elem, 1)

 Whrite a function index_of(elem, 1) that takes two
arguments (e lem of any type and list 1) and returns the first

index of elem if elem is in the list L and =1 otherwise
>>> index of('blue', ['red', 'blue', 'blue'l])

1

>>> index_of(14, [23, 1, 10, 11, 14])

4

>>> index_of('a', ['b', 'c', 'd', 'e'l])
-1

Side by Side: 1ndex_of

def index of(elem, 1):

for i in range(len(1)):

match?

if U[i] == elem:
stop loop!
return 1

1if not found
return -1

def index of(elem, 1):
found = False # flag
index_of_elem = -1

1 =20

while not found and i < len(1l):

match?

if elem == 1[i]:
stop the loop!
found = True

index_of _elem = 1
keep going
1 +=1

return i1ndex_of_elem

Mutability

| Ists are Mutable

- Lists are a mutable data type in Python:
- After a list Is created, we can change its value

» There are many ways to mutate a list, we will only discuss two of these
for now (we'll examine others after the midterm)

» Direct assignment (e.g, Ist[index] = item)

- Appending to list using »append(item) notation

Direct Assignment

- Lists are a mutable data type in Python:
- After a list Is created, we can change its value

+ One way to modify a list is by direct assignment

>>> my_list = ['cat', 'dog'l]
>>> my_Llist[1] = 'fish'

>>> my_list

['cat', 'fish']

my_list has changed

Direct Assignment

An assisnment operation to an existing index of a list changes the value
stored at that index

Syntax: my_list[index] = item

>>> my_list = ['cat', 'dog'l]

>>> my_Llist[1] = 'fish'

>>> my_Llist

['cat', 'fish'] What will this do?
>>> my_Llist[7] = 'oops'

IndexError: list assignment index out of range

>>>
Can only assign to existing indices

Using .append(item)

Appending to a list places a new item after the current end of the list,
increasing the list's length by one.

Syntax: my_list.append(item)
Example.
my_list = [1, 7, 3, 4]

my_list.append(5) # insert 5 after the end of list

myL1st Before myList After

[1, 7’ 3, 4] [1, 7’ 3, 4, 5]

Sneaky Appending

- We've often updated "accumulator lists" by "appending” items in loops

* S0 far we have been using += (concatenation)

+ var += val normally is a shorthand for var = var + val

* But when var is a list, Python secretly calls
var.append(val)

>>> my_list = ['cat', 'dog']

>>> my_list += ['fish']
Python actually replaces += with

>>> my_list append without telling us!

['cat', 'dog', 'fish']

Explicit A

D

DENC

ng

+ If we instead explicitly use the .append(1tem) syntax, then the code

we execute Is the code that we actually wrote

- This also avoids one of the recurring errors that we've been running into

in our labs! (Type mismatches with +=)

>>> my_list = ['cat', 'dog']
>>> my_list += ['fish']

>>> my_list

[‘cat', 'dog', 'fish']

Brackets needed here

>>> my_list = ['cat', 'dog'l]

>>> my_list.append('fish')

>>> my_list

[

'cat’,

'dog', 'fish']

NO brackets here

Strings are Immutable

- Other data types we have seen are immutable
- Strings, Ints, floats, range() are immutable

» Once created, we change the value of an immutable data type

Will this let us change
>>> my_string = 'cat' my_stringto 'bat'?

>>> my_string[0] = 'b'
TypeError Traceback (most recent call last)
Cell In[25], line 2
1l my_string = 'cat’
————> 2 my_string[@] = 'b'

TypeError: 'str' object does not support item assignment

Cannot change a string!

vscode-notebook-cell:?execution_count=25&line=2
vscode-notebook-cell:?execution_count=25&line=1
vscode-notebook-cell:?execution_count=25&line=2

Mutability has Consequences!

- Mutablility of data types can have unintended consequences

>>> word
>>> COpy
>>> word

>>> Copy
"hello"

Changing wo rd does not change copy

"hello"
word
word + "worlLd"

>>2>

>>>

>>2>

>>2>

word_list = ["hello"]
copy = word_list
word_list.append("world")
copy

["hello', 'world']

Changingword_1Llist also
changes copy

Mutability has Consequences!

- Mutability of data types can have unintended conseguences

- Aliasing as a consequence of Mutability. In Python, creating a copy of

a mutable object creates an alias rather than a true copy

>>> word
>>> COpy
>>> word

>>> Copy
"hello"

Changing wo rd does not change copy

"hello"
word
word + "worlLd"

>>2>

>>>

>>2>

>>2>

word_list = ["hello"]
copy = word_list
word_list.append("world")
copy

["hello', 'world']

Changingword_1Llist also
changes copy

[akeaways

» New iteration statement: while loop as an alternative to for loops are

meant to iterate for a fixed number of times

+ Used when the stopping condition is determined "on the fly"

» Keeps iterating as long as Boolean condition evaluates to True

- Lists are mutable data types

- Can modify the contents of a list by direct assignment or by
using .append()

» Strings, Ints, floats, range() are iImmutable: cannot be modified
- Mutability has consequences!

- Wil discuss aliasing in detail next lecture

Modules vs Scripts

Importing Functions vs Running as a Script

» Question. If you only have function definitions in a file Tuncs. py,
and run 1t as a script, what happens?

% python3 funcs.py

For testing functions, we want to call /invoke them on various test
cases, In Labs, we do this in a separate file called runtests.py

» To add function calls in runtests.py, we putthem inside the
gsuarded block 1f __name__ == "_main__":

- The statements within this special guarded are only run when the file is
run as a script but not when 1t Is imported as a module

- Let's see an example

foo.py
test the role of _ name__ variable
name__)

print("__name__ is set to",

Running foo.py as a script

shikhasingh@Shikhas—-1iMac c¢s134 % python3 foo.py
__hame__ 1s set to _ main__

shikhasingh@Shikhas—iMac cs134 % python3

Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin

Type "help", "copyright', "credits" or "license"
for more information.
>>> 1mport foo |
__hame__ 1s set to foo

Importing it as a module

Takeaway: 1f __name__ == "__main__
- If you want some statements (like test calls) to be run ONLY when

the file is run as a script

» Put them inside the guarded 1f __name__ ==
" main__" block

- When we run our automatic tests on your functions we import them

and this means name 1s NOT set to main

» So nothing inside the guarded 1f __name__ ==

__main__ " block is executed

- This way your testing /debugging statements do not get in the way

