
CS 134 Lecture 11:
While Loops & Mutability

Announcements & Logistics
• HW 5 will be released today on GLOW

• Lab 4 Part 1 due Wed/Thurs 10 pm

• We will return feedback (including tests not found in runtests.py)

• Reminder that Midterm is Thursday March 14

• Two exam slots: 6-7.30 pm, 8-9.30 pm

• Room: Bronfman auditorium

• Midterm review Monday March 11 evening 7-9 pm in Bronfman Auditorium

• How to study: review lectures

• Practice past HW and labs (using pencil and paper)

• Additional POGIL worksheets posted on course website (resources)

Do You Have Any Questions?

http://cs.williams.edu/~cs134/pogils/pogils.html
http://cs.williams.edu/~cs134/resources.html

Last Time
• Wrap upped up OSCAR example (more for loops and nested lists)
• Introduced list comprehensions

• Short-hand expressions for common looping patterns
• Anything you can do with a list comprehension can be done using

the techniques we've discussed so far ; very "Pythonic" idiom

Today's Plan
• New iteration statement: the while loop

• Discuss the mutability of different data types and the implications

When you don't know when to stop
(ahead of time):

While Loop

Story so far : for loops
• Python for loops are used to iterate over a fixed sequence

• No need to know the sequence's length ahead of time
• Interpretation of for loops in Python:

 for thing in things:
 (do something with thing)

• Other programming languages (like Java) have for loops that require you
to explicitly specify the length of the sequence or a stopping condition

• Thus Python for loops are sometimes called “for each” loops
• Takeaway: For loops in Python are meant to iterate directly over each

item of a given iterable object (such as a sequence)

 What if We Don’t Know When to Stop?
• We always know the stopping condition of a for loop: when there are no

more elements in the sequence

["A", "chilly", "autumn", "day"]

• Are there contexts where we don’t know when to stop a loop?
• Suppose you want to play a "guessing game" where a user

repeatedly guesses numbers until they correctly guess the secret
number

• How many times should the loop execute?
• Under what condition should the loop end?

The While Loop
A while loop executes the loop body 0 or more times, stopping once
the loop condition evaluates to False:

while <boolean expression>:
 <loop body>
 <loop body>
 ...

Stopping condition

while True:
 print("never leaves")

while False:
 print("never enters")

"Infinite" loop!Loop body never executes

While Loop Example
• Example of a while loop that depends on user input:

prompt = "Please enter a name (type quit to exit): "
name = input(prompt)

while (name != "quit"):
 print("Hi,", name)
 name = input(prompt)
print("Goodbye")

Stopping condition

While Loop Example: Print Halves
• Given a number, print all the positive “halves” : keep dividing n by 2

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by 2

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

def print_halves2(n):
 while n > 0:
 print(n)
 n = n/2

print_halves2(100)

What does this do?

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by 2

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

def print_halves2(n):
 while n > 0:
 print(n)
 n = n/2

print_halves2(100)

Float division!
Be careful!

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by 2

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

def print_halves3(n):
 while n > 0:
 print(n)
 n = n//2

print_halves3(100)

What about this loop?

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by 2

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

def print_halves3(n):
 while n > 0:
 print(n)
 n = n//2

print_halves3(100)

Another infinite loop!
Indentation matters!

if boolean_expresion:

statement 1

statement 2

....

....

end of if

while and if side by side
while boolean_expresion:

statement 1

statement 2

....

....

end of while

Execute body once if the boolean
expression evaluates to true

Keep executing body as long as
the boolean expression (continues)

to evaluate to true

Side by Side: for and while loops

Iteration steps are implicit in a Python
for loop: i takes on values 0, 1, 2, 3, 4

Explicitly initialize variable

for i in range(5):
 print('$' * i)

i = 0
while i < 5:
 print('$' * i)
 i += 1

Update value of variable
used in test condition

Test stopping condition

Common while loops steps that we explicitly write:
• Initialize a variable used in the test condition
• Test condition that causes the loop to end when False
• Within the loop body, update the variable used in the test condition

Breaking out of loops
• Stopping condition of for loop: no more elements in sequence
• What if we want to stop our iteration early: how did we handle this?

• return (or, less ideally, break)
• Let's examine an example: index_of(elem, l)

• Write a function index_of(elem, l) that takes two
arguments (elem of any type and list l) and returns the first
index of elem if elem is in the list l and -1 otherwise

 >>> index_of('blue', ['red', 'blue', 'blue'])
 1
 >>> index_of(14, [23, 1, 10, 11, 14])
 4
 >>> index_of('a', ['b', 'c', 'd', 'e'])
 -1

Side by Side: index_of
def index_of(elem, l):

 for i in range(len(l)):
 # match?
 if l[i] == elem:
 # stop loop!
 return i

 # if not found
 return -1

def index_of(elem, l):

 found = False # flag
 index_of_elem = -1
 i = 0

 while not found and i < len(l):
 # match?

 if elem == l[i]:
 # stop the loop!

 found = True
 index_of_elem = i
 # keep going
 i += 1

 return index_of_elem

Mutability

• Lists are a mutable data type in Python:
• After a list is created, we can change its value

• There are many ways to mutate a list, we will only discuss two of these
for now (we'll examine others after the midterm)

• Direct assignment (e.g., lst[index] = item)
• Appending to list using .append(item) notation

Lists are Mutable

• Lists are a mutable data type in Python:
• After a list is created, we can change its value

• One way to modify a list is by direct assignment

Direct Assignment

>>> my_list = ['cat', 'dog']
>>> my_list[1] = 'fish'
>>> my_list
['cat', 'fish']

my_list has changed!

An assignment operation to an existing index of a list changes the value
stored at that index

Direct Assignment

>>> my_list = ['cat', 'dog']
>>> my_list[1] = 'fish'
>>> my_list
['cat', 'fish']
>>> my_list[7] = 'oops'
IndexError: list assignment index out of range
>>>

Syntax: my_list[index] = item

What will this do?

Can only assign to existing indices

Using .append(item)
Appending to a list places a new item after the current end of the list,
increasing the list's length by one.

Example.

my_list = [1, 7, 3, 4]

my_list.append(5) # insert 5 after the end of list

[1, 7, 3, 4]

myList Before

[1, 7, 3, 4, 5]

myList After

Syntax: my_list.append(item)

• We've often updated "accumulator lists" by "appending" items in loops
• So far we have been using += (concatenation)

• var += val normally is a shorthand for var = var + val
• But when var is a list, Python secretly calls
var.append(val)

Sneaky Appending

>>> my_list = ['cat', 'dog']
>>> my_list += ['fish']
>>> my_list
['cat', 'dog', 'fish']

Python actually replaces += with
append without telling us!

• If we instead explicitly use the .append(item) syntax, then the code
we execute is the code that we actually wrote

• This also avoids one of the recurring errors that we've been running into
in our labs! (Type mismatches with +=)

Explicit Appending

>>> my_list = ['cat', 'dog']
>>> my_list += ['fish']
>>> my_list
['cat', 'dog', 'fish']

>>> my_list = ['cat', 'dog']
>>> my_list.append('fish')
>>> my_list
['cat', 'dog', 'fish']

Brackets needed here NO brackets here

• Other data types we have seen are immutable

• Strings, ints, floats, range() are immutable
• Once created, we cannot change the value of an immutable data type

Strings are Immutable

>>> my_string = 'cat'
>>> my_string[0] = 'b'

TypeError Traceback (most recent call last)
Cell In[25], line 2
 1 my_string = 'cat'
----> 2 my_string[0] = 'b'

TypeError: 'str' object does not support item assignment

Cannot change a string!

Will this let us change
my_string to 'bat'?

vscode-notebook-cell:?execution_count=25&line=2
vscode-notebook-cell:?execution_count=25&line=1
vscode-notebook-cell:?execution_count=25&line=2

• Mutability of data types can have unintended consequences

Mutability has Consequences!

>>> word = "hello"
>>> copy = word
>>> word = word + "world"
>>> copy
"hello"

>>> word_list = ["hello"]
>>> copy = word_list
>>> word_list.append("world")
>>> copy
['hello', 'world']

Changing word does not change copy Changing word_list also
changes copy

• Mutability of data types can have unintended consequences
• Aliasing as a consequence of Mutability. In Python, creating a copy of

a mutable object creates an alias rather than a true copy

Mutability has Consequences!

>>> word = "hello"
>>> copy = word
>>> word = word + "world"
>>> copy
"hello"

>>> word_list = ["hello"]
>>> copy = word_list
>>> word_list.append("world")
>>> copy
['hello', 'world']

Changing word does not change copy Changing word_list also
changes copy

• New iteration statement: while loop as an alternative to for loops are
meant to iterate for a fixed number of times

• Used when the stopping condition is determined "on the fly"

• Keeps iterating as long as Boolean condition evaluates to True
• Lists are mutable data types

• Can modify the contents of a list by direct assignment or by
using .append()

• Strings, ints, floats, range() are immutable: cannot be modified
• Mutability has consequences!

• Will discuss aliasing in detail next lecture

Takeaways

Modules vs Scripts

Importing Functions vs Running as a Script
• Question. If you only have function definitions in a file funcs.py,

and run it as a script, what happens?
% python3 funcs.py

• For testing functions, we want to call /invoke them on various test
cases, in Labs, we do this in a separate file called runtests.py
• To add function calls in runtests.py, we put them inside the

guarded block if __name__ == "__main__":
• The statements within this special guarded are only run when the file is

run as a script but not when it is imported as a module

• Let's see an example

shikhasingh@Shikhas-iMac cs134 % python3 foo.py
__name__ is set to __main__

shikhasingh@Shikhas-iMac cs134 % python3
Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin
Type "help", "copyright", "credits" or "license"
for more information.
>>> import foo
__name__ is set to foo

foo.py
test the role of __name__ variable
print("__name__ is set to", __name__)

Running foo.py as a script

Importing it as a module

Takeaway: if __name__ == "__main__"

• If you want some statements (like test calls) to be run ONLY when
the file is run as a script

• Put them inside the guarded if __name__ ==
"__main__" block

• When we run our automatic tests on your functions we import them
and this means name is NOT set to main

• So nothing inside the guarded if __name__ ==
"__main__" block is executed

• This way your testing /debugging statements do not get in the way

