
CS 134 Lecture 10:
List Comprehensions

Announcements & Logistics
• HW 4 due Monday at 10 pm

• Lab 4 Part 1 checkpoint: Wed/Thurs 10 pm

• We will review the code for the prelab together at the start of lab

• Reminder that Midterm is March 14

• Evening exam with two slots: 6-7.30 pm, 8-9.30 pm

• Room TBD

• We will have a midterm review earlier that week (in the evening)

• How to study:

• Review lectures

• Practice past HW and labs on pencil and paper

• Supplemental POGIL activities

Do You Have Any Questions?

Last Time
• Introduced and used nested lists
• More examples of iteration:

• Iterate over nested sequences and collect/filter useful statistics
• Discussed how to count using nested loops/lists
• Introduced idea of accumulation variable to find "most"

Today's Plan
• Wrap up the oscars example
• Introduce list comprehensions
• Discuss modules vs scripts

Oscar 2024 Wrap Up

Helper Function: count_nominations

def count_nominations(movie, nominations_lists):
 '''Function that takes two arguments: movie (str) and
 nominations_lists (list of lists) and returns the count
 (int) of the number of times movie is nominated.'''

 # initialize accumulation variable
 count = __

 # iterate over list of nominations
 for ______ in __________:
 for _______ in __________:
 # is the movie name a prefix of nomination?
 if is_prefix(movie, nominee):
 count += ___ # match! count the nomination
 return _____

Helper Function: count_nominations

def count_nominations(movie, nominations_lists):
 '''Function that takes two arguments: movie (str) and
 nominations_lists (list of lists) and returns the count
 (int) of the number of times movie is nominated.'''

 # initialize accumulation variable
 count = 0

 # iterate over list of nominations
 for category in nominations_lists:
 for nominee in category:
 # is the movie name a prefix of nomination?
 if is_prefix(movie, nominee):
 count += 1
 return count

Exercise: most_nominations
def most_nominations(movie_list, nomination_list):
 '''Returns list of movies with most nominations'''
 most_so_far = ___ # keeps track of most # nominations
 most_list = ___ # remember the movie names
 for movie in movie_list:
 num = count_nominations(movie, nomination_list)
 # found a movie with more nominations
 if num > most_so_far:
 # track movie as "most nominated so far"

 # found a movie tied for most nominations so far
 elif num == most_so_far:
 # track this movie too

 return most_so_far

Exercise: most_nominations
def most_nominations(movie_list, nomination_list):
 '''Returns list of movies with most nominations'''
 most_so_far = 0 # keeps track of most # nominations
 most_list = [] # remember the movie names
 for movie in movie_list:
 num = count_nominations(movie, nomination_list)
 # found a movie with more nominations
 if num > most_so_far:
 # track movie as "most nominated so far"
 most_so_far = num
 most_list = [movie]

 # found a movie tied for most nominations so far
 elif num == most_so_far:
 # track this movie too
 most_list += [movie]

 return most_so_far

• When looking for the "largest" among elements

• Initialize a most_so_far variable to be 0
• Update every time we see a bigger value (if num > most_so_far)

• How would we find the "least" among elements?

• Initialize a least_so_far variable to be ___?

• Update every time we see a smaller value (if num < least_so_far)

How would find least nominations?

Pick a number larger than largest possible value
so that we have to find a smaller value in

our iteration.

List Comprehensions

List Patterns: Map & Filter
When using lists and loops, there are common patterns that appear

• Filtering: Iterate over a list and return a new list that results from
keeping only elements of the original list that satisfy some condition

• E.g., take a list of integers num_lst and return a new list which
contains only the even numbers in num_lst

• Mapping: Iterate over a list and return a new list that results from
performing an operation on each element of original list

• E.g., take a list of integers num_lst and return a new list
which contains the square of each number in num_lst

Python allows us to implement these patterns succinctly using
list comprehensions

A supplemental Python-specific feature

Mapping Example: Using Loops
• Mapping: Iterate over a list and return a new list that results from

performing an operation on each element of original list

• Example: Iterate through a sequence of numbers (e.g. range of 10
integers) and create a new list that contains the square of the
numbers

• We can rewrite this loop a list comprehension in Python

Accumulate squares in resultresult = []
for n in range(10):
 result += [n**2]

Mapping: List Comprehensions
Mapping List Comprehension (perform operation on each element)

new_list = [expression for item in sequence]

result = [n**2 for n in range(10)]

result = []
for n in range(10):
 result += [n**2]

expression item sequence

Note: All list comprehensions are "short hands" common for loop patterns.

Filtering Example: Using Loops
• Filtering: Iterate over a list and return a new list that results from

keeping only elements of the original list that satisfy some condition

• Example: Iterate through a sequence of numbers (list or range) and
create a new list only containing even numbers

• We can rewrite this loop a list comprehension in Python

Accumulate even numbers in result
result = []
for n in range(10):

if n % 2 == 0:
 result += [n]

result = []
for n in range(10):

if n % 2 == 0:
 result += [n]

Filtering: List Comprehensions
Filtering List Comprehension (only keep some elements)

Note: All list comprehensions are "short hands" common for loop patterns.

new_list = [expr for item in sequence if conditional]

result = [n for n in range(10) if n%2 == 0]

expr sequence conditional

Mapping & Filtering: Using Loops
• Mapping & Filtering: Iterate over a list and return a new list that

results from performing an operation on some elements of the
original list (that satisfy some condition)

• Example: Iterate through a sequence of numbers (list or range) and
create a new list only containing the squares of the even numbers

• We can rewrite this loop a list comprehension in Python

Accumulate square of even
numbers in result

result = []
for n in range(10):

if n % 2 == 0:
 result += [n**2]

result = [n**2 for n in range(10) if n%2 == 0]

result = []
for n in range(10):
 if n%2 == 0:
 result += [n**2]

General List Comprehension
new_list = [expression for item in sequence if conditional]

expression item sequence conditional

Note: All list comprehensions are "short hands" common for loop patterns.

Can use functions or any
operations here

List Comprehensions

• Important points:
• List comprehensions always start with an expression (a variable name

like item is an expression)
• A list comprehension can be used instead of a list accumulation

variable (accumulation variables always need to be initialized)

• So, it always creates a new list that we store in var new_list
• We never use += inside a list comprehension

• We don't need to use a list comprehension (just an option): can
always write a for loop instead
• Just a handy shortcut for common code patterns

new_list = [expression for item in sequence if conditional]

List Comprehensions

• Important points:
• List comprehensions always start with an expression (a variable name like
item is an expression)

• We never use += (append) inside of list comprehensions
• We can combine mapping and filtering into a single list comprehension:

Mapping List Comprehension (perform operation on each element)
new_lst = [expression for item in sequence]

Filtering List Comprehension (only keep some elements)

new_lst = [item for item in sequence if conditional]

new_lst = [expression for item in sequence if conditional]

Using List Comprehensions
• List comprehensions are convenient when working with sequences
• Recall our list of movie names from the oscar data
• Example: How can we find the list of movie names that begin with a

vowel?
• Hint: we can use a helper function starts_with_vowel()
• Idea:

• Iterate over movies (list of strings)
• For each name in list, check if first letter is a vowel
• If it is, add name to result list

Using List Comprehensions
• List comprehensions are convenient when working with sequences

• Assume we have a helper function starts_with_vowel

result = []
for m in movies:
 if starts_with_vowel(m):
 result += [m]

result = [m for m in movies if starts_with_vowel(m)]

Using List Comprehensions
• List comprehensions are convenient when working with sequences

• Assume we have a helper function starts_with_vowel

result = []
for m in movies:
 if starts_with_vowel(m):
 result += [m]

result = [m for m in movies if starts_with_vowel(m)]

item
sequence

conditional
expression

conditional

expression

item

sequence

Helper Function

def starts_with_vowel(word):
 '''Takes a word (string) as input and
 returns True if it starts with a vowel,
 otherwise returns False.'''
 if len(word) != 0:
 # check first letter is a vowel
 return word[0] in 'aeiouAEIOU'
 # if word is empty string
 return False

Modules vs Scripts

Importing Functions vs Running as a Script
• Question. If you only have function definitions in a file funcs.py,

and run it as a script, what happens?
% python3 funcs.py

• For testing functions, we want to call /invoke them on various test
cases, in Labs, we do this in a separate file called runtests.py
• To add function calls in runtests.py, we put them inside the

guarded block if __name__ == "__main__":
• The statements within this special guarded are only run when the file is

run as a script but not when it is imported as a module

• Let's see an example

shikhasingh@Shikhas-iMac cs134 % python3 foo.py
__name__ is set to __main__

shikhasingh@Shikhas-iMac cs134 % python3
Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin
Type "help", "copyright", "credits" or "license"
for more information.
>>> import foo
__name__ is set to foo

foo.py
test the role of __name__ variable
print("__name__ is set to", __name__)

Running foo.py as a script

Importing it as a module

Takeaway: if __name__ == "__main__"

• If you want some statements (like test calls) to be run ONLY when
the file is run as a script

• Put them inside the guarded if __name__ ==
"__main__" block

• When we run our automatic tests on your functions we import them
and this means name is NOT set to main

• So nothing inside the guarded if __name__ ==
"__main__" block is executed

• This way your testing /debugging statements do not get in the way

