CS 134 Lecture |0:;
LiIst Comprehensions

Announcements & Logistics

HW 4 due Monday at |0 pm
Lab 4 Part | checkpoint:Wed/Thurs 10 pm
VWe will review the code for the prelab together at the start of lab
Reminder that Midterm 1s March |4
Evening exam with two slots: 6-7.30 pm, 8-9.30 pm
Room TBD
We will have a midterm review earlier that week (in the evening)
How to study:
Review lectures
Practice past HWV and labs on pencil and paper

Supplemental POGIL activities
Do You Have Any Questions?

L ast [Ime

Introduced and used nested lists
More examples of iteration:
'terate over nested sequences and collect/filter useful statistics

Discussed how to count using nested loops/lists

ntroduced idea of accumulation variable to find "most"

Jloday's Plan

Wrap up the oscars example
Introduce list comprehensions

Discuss modules vs scripts

Oscar 2024 Wrap Up

Helper Function: count_nominations

def count_nominations(movie, nominations_lists):
'''Function that takes two arguments: movie (str) and
nominations lists (list of lists) and returns the count
(int) of the number of times movie is nominated.'''

1nitialize accumulation variable
count =
1terate over list of nominations
for 1n '
for 1n .
1s the movie name a prefix of nomination?
if is_prefix(movie, nominee):
count += __ # match! count the nomination

return

Helper Function: count_nominations

def count_nominations(movie, nominations_lists):
'''Function that takes two arguments: movie (str) and
nominations lists (list of lists) and returns the count
(int) of the number of times movie is nominated.'''

1nitialize accumulation variable
count = 0

1terate over list of nominations
for category 1in nominations_lists:
for nominee 1in cateqgory:
1s the movie name a prefix of nomination?
if is_prefix(movie, nominee):
count += 1
return count

Exercise: most nominations

def most_nominations(movie_list, nomination_ 1list):

''"'Returns list of movies with most nominations'''
most _so _far = __ # keeps track of most # nominations
most _list = _ # remember the movie names
for movie in movie_ list:

num = count_nominations(movie, nomination_list)

found a movie with more nominations

if num > most_so_far:

track movie as '"most nominated so far"

found a movie tied for most nominations so far
elif num == most_so_far:
track this movie too

return most_so_far

Exercise: most nominations

def most_nominations(movie_list, nomination_ 1list):
''"'Returns list of movies with most nominations'''
most_so_far = 0 # keeps track of most # nominations
most list = [] # remember the movie names
for movie in movie_ list:
num = count_nominations(movie, nomination_list)
found a movie with more nominations
if num > most_so_far:
track movie as '"most nominated so far"
most _so_far = num
most_list = [movie]

found a movie tied for most nominations so far
elif num == most_so_far:

track this movie too

most list += [moviel

return most_so_far

How would find least nominations?

- When looking for the "largest” among elements
» Initialize a most_so_far variable to be @
- Update every time we see a bigger value (if num > most_so_far)
- How would we find the "least” among elements!?
Initialize a Least_so_far variabletobe ?

- Update every time we see a smaller value (i+ num < least_so_far)

Pick a number larger than largest possible value
so that we have to find a smaller value In
our rteration.

List Comprehensions

| Ist Patterns: Map & Filter

VWhen using lists and loops, there are common patterns that appear

- Filtering: Iterate over a list and return a new list that results from
keeping only elements of the original list that satisfy some condition

F.o, take a list of integers num_1st and return a new list which
contains only the even numbers in num_1st

- Mapping: [terate over a list and return a new list that results from
performing an operation on each element of original list

E.o, take a list of integers num_1st and return a new list
which contains the square of each number in num_1lst

Python allows us to implement these patterns succinctly using
list comprehensions
A supplemental Python-specific feature

Mapping Example: Using Loops

Mapping: [terate over a list and return a new list that results from
performing an operation on each element of original list

Fxample: [terate through a sequence of numbers (e.g. range of 10
integers) and create a new list that contains the square of the
numbers

result = [] Accumulate squares in result

for n in range(10):
result += [n*x2]

We can rewrtte this loop a list comprehension in Python

Mapping: List Comprehensions

Mapping List Comprehension (perform operation on each element)

new_list = [expression for item 1in sequence]

(result = [1)
(for n in range(10):)
result +=([n**2])

result = [(n**ZX?or n in range(10)]

expression item sequence

Note: All list comprehensions are "short hands" common for loop patterns.

Filtering Example: Using Loops

Filtering: Iterate over a list and return a new list that results from
keeping only elements of the original list that satisfy some condition

Example: [terate through a sequence of numbers (list or range) and
create a new list only containing even numbers

result = []
for n 1n range(10): Accumulate even numbers in result
1f n % 2 == 0:

result += [n]

We can rewrite this loop a list comprehension in Python

Hitering: List Comprehensions

Filtering List Comprehension (only keep some elements)

new_list = [expr for item 1in sequence 1f

(result = [])
(for n in ranqe(l@):)
1f(n % @)
result += [n]
_—

/

\4

\4

result = [(n)for n in range(10)) @f n%2 == 0])

expr sequence

Note: All list comprehensions are "short hands" common for loop patterns.

Mapping & riltering: Using Loops

Mapping & Filtering: lterate over a list and return a new list that
results from performing an operation on some elements of the
original list (that satisfy some condition)

Example: [terate through a sequence of numbers (list or range) and
create a new list only containing the squares of the even numbers

result = []
: _ Accumulate square of even
fOI". n in range(10): numbers in result
1f n % 2 == 0:

result += [nxx2]

We can rewrite this loop a list comprehension in Python

General List Comprehension

new_list = [expression for item 1in sequence 1f conditional]

I 1t = []
(for n in range(10):
(if n%2 == 0}
Can use functions or any 1f n%2

r&sult += (n*x2]

operations here

]

result = Hn**Z)(for n in range(l@)(if n%2 == Q)]

expression item sequence conditional

Note: All list comprehensions are "short hands" common for loop patterns.

List Comprehensions

new_list = [expression for item in sequence 1if 1

* Important points:

List comprehensions always start with an expression (a variable name
ike 1tem is an expression)

A list comprehension can be used instead of a list accumulation
variable (accumulation variables always need to be initialized)

» S0, it always creates a new list that we store in var new_L1st
- We never use += Inside a list comprehension

We don't need to use a list comprehension (just an option): can
always write a for loop Instead

- Just a handy shortcut for common code patterns

List Comprehensions

Mapping List Comprehension (perform operation on each element)

new_lst = [expression for item 1n sequence]

Filtering List Comprehension (only keep some elements)

new_lst = [item for item in sequence 1if 1

Important points:

List comprehensions always start with an expression (a variable name like
1temis an expression)

* We never use += (append) inside of list comprehensions

* VWe can combine mapping and filtering into a single list comprehension:

new_lst = [expression for item 1in sequence 1f]

Using List Comprehensions

List comprehensions are convenient when working with sequences
Recall our list of movie names from the oscar data

Fxample: How can we find the list of movie names that begin with a
vowel!

Hint: we can use a helper function starts_with_vowel()
|dea;

terate over movies (list of strings)

For each name In list, check If first letter is a vowel

If it I1s, add name to result list

Using List Comprehensions

List comprehensions are convenient when working with sequences

Assume we have a helper function starts_with_vowel

result = []
for m 1n movies:
if starts _with_vowel(m):
result += [m]

+

result = [m for m in movies if starts_with vowel(m)]

Using List Comprehensions

List comprehensions are convenient when working with sequences

Assume we have a helper function starts_with_vowel

item

seaquence
result = I 9

for m 1n movies:
if starts _with_vowel(m):
result += [m]

expression

item

result = [m for m in movies if starts_with vowel(m)]

' n
expression sequence

Helper Function

def starts with vowel(word):

''"'"Takes a word (string) as input and

returns True 1f it starts with a vowel,

otherwise returns False.'''

if len(word) != 0:
check first letter 1s a vowel
return word[0@] in 'aeiouAEIOU'

1f word 1s empty string

return False

Modules vs Scripts

Importing Functions vs Running as a Script

» Question. If you only have function definitions in a file Tuncs. py,
and run 1t as a script, what happens?

% python3 funcs.py

For testing functions, we want to call /invoke them on various test
cases, In Labs, we do this in a separate file called runtests.py

» To add function calls in runtests.py, we putthem inside the
gsuarded block 1f __name__ == "_main__":

- The statements within this special guarded are only run when the file is
run as a script but not when 1t Is imported as a module

- Let's see an example

foo.py
test the role of _ name__ variable
name__)

print("__name__ is set to",

Running foo.py as a script

shikhasingh@Shikhas—-1iMac c¢s134 % python3 foo.py
__hame__ 1s set to _ main__

shikhasingh@Shikhas—iMac cs134 % python3

Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin

Type "help", "copyright', "credits" or "license"
for more information.
>>> 1mport foo |
__hame__ 1s set to foo

Importing it as a module

Takeaway: 1f __name__ == "__main__
- If you want some statements (like test calls) to be run ONLY when

the file is run as a script

» Put them inside the guarded 1f __name__ ==
" main__" block

- When we run our automatic tests on your functions we import them

and this means name 1s NOT set to main

» So nothing inside the guarded 1f __name__ ==

__main__ " block is executed

- This way your testing /debugging statements do not get in the way

