CS 134 Lectu

Nestec

e 9:

| Ist

Announcements & Logistics

HW 4 due Monday at |0 pm
Lab 4 will be released today
Prelab will be posted but no penalty if not completed by start of lab

We will review the code for the prelab together at the start of lab

Lab 2 graded feedback
Let us know If you have guestions or concerns

Comments and coding style: comments (start with #) are one important
part of writing good code --- documentation Is essential

Comments vs docstrings: docstrings document the function interface (Input
parameters, expected return), comments document the function body (logic
used to implement the interface

Do You Have Any Questions?

L ast [Ime

Introduced nested for loops
Discussed how to trace the execution of loops

Use more examples of the range sequence type

Reviewed the role of return statements in code

Jloday's Plan

Introduce and use nested lists
More examples of iteration:

'terate over nested sequences and collect/filter useful statistics
Module vs scripts (if time)

How to import and test functions

Role of the special 1f __name__ == "__main__": code
block

Nested Lists

Nested Lists

Remember; any object can be an element of a list. This includes other lists!
That is, we can have lists of lists (sometimes called a two-dimensional list)!

Suppose we have a list of lists of strings called myL1ist

Nested Lists

Remember; any object can be an element of a list. This includes other lists!
That is, we can have lists of lists (sometimes called a two-dimensional list)!
Suppose we have a list of lists of strings called myL1ist

- word = myList[row] [element] (# word is a string)

row is index into “outer” list (identifies which inner list we want). In other
words, defines the “row’” you want.

e Llement is index into “inner’ list (identifies which element within the
inner list). In other words, defines the “column™ you want.

EIGTe”t myList[1] [0]7?
myList = [['cat', 'frog'l, 'dog’

[[dog'|, 'toad'], ~——roOw
['cow', 'duck']]

Lists and Data lypes

Python is a loosely typed programming language

- We don't explicitly declare data types of variables

But every value still has a data type!

t's important to make sure we pay attention to what a function
expects, especially with lists and strings! (remember this in Lab 4)

Lists of lists of strings versus list of strings:

myList =

[

'cat',
:Idogl’

'cow',

'frog"'.
'toad"']

'duck'

myList[1] [@] is 'dog'

’

4

]

myList

['cat’,
IdOg’,
'cow’,

myList[1] [O]

1S

'frog’,
'toad’,
'duck']

Ifl

Sequence Operations

characters = [['Elizabeth Bennet', 'Fitzwilliam Darcy'],
['Harry Potter', 'Ron Weasley'],

['Frodo Baggins', 'Samwise Gamgee'l,
['Julius Ceasar', 'Brutus'l]

>>> len(characters) # what is this?
4

>>> len(characters[0]) # what is this?
2

>>> characters += ['Rhett Butler', 'Scarllet 0 Hara']
[['Elizabeth Bennet', 'Fitzwilliam Darcy'l,

'Harry Potter', 'Ron Weasley'l],
'Frodo Baggins', 'Samwise Gamgee'l,
('Julius Ceasar', 'Brutus'l],

'Rhett Butler',

'Scarllet 0 Hara'l

Be careful when concatenating lists of
two different types

Looping Over Nested Lists

characters =

[['Elizabeth Bennet', 'Fitzwilliam Darcy', 'Charles Bingley'l],
['Harry Potter', 'Ron Weasley', 'Hermoine Granger'],

'Frodo Baggins', 'Samwise Gamgee', 'Gandalf']]

for char_list 1n characters:
print(char_list)
for name in char lui-t: Loops over the "outer lists”
print(name)

Prints each inner list one by one

Prints each individual name one by one

Loops over the names In each "inner list”

Why Nested Lists?

Nested Lists are useful to represent tabular data
Example: data stored in google sheets

Fach inner list Is a row

List of lists: collection of all rows (the whole table)

L ets take an example of real data that we can store as list of lists

Oscar 2024 Example

Accumulation Pattern: most_so_ far

So far, we have seen examples of accumulation variable
Count number of occurrences of something: count_vowels
Collect sequences: vowel_seq, madlibs_puzzle_solution

Often, we need to find more information about a list of data we are
storing such as:

find the earliest publication date In a data about books
find the largest stat in data about sports, etc.

To do so, we need to iterate through the list and maintain a new type
of accumulation variable that keeps track of this information

We need to update i1t as we find out more information

Exercise: count nominations

Write a function that takes a table and returns the
number of times a target string appears as an entry in
that table.

Exercise: most._nominations

Write a function that takes a table and returns the string
that appears as an entry in that table the most times.

Modules vs Scripts

Importing Functions vs Running as a Script

» Question. If you only have function definitions in a file Tuncs. py,
and run 1t as a script, what happens?

% python3 funcs.py

For testing functions, we want to call /invoke them on various test
cases, In Labs, we do this in a separate file called runtests.py

» To add function calls in runtests.py, we putthem inside the
gsuarded block 1f __name__ == "_main__":

- The statements within this special guarded are only run when the file is
run as a script but not when 1t Is imported as a module

- Let's see an example

foo.py
test the role of _ name__ variable
name__)

print("__name__ is set to",

Running foo.py as a script

shikhasingh@Shikhas—-1iMac c¢s134 % python3 foo.py
__hame__ 1s set to _ main__

shikhasingh@Shikhas—iMac cs134 % python3

Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin

Type "help", "copyright', "credits" or "license"
for more information.
>>> 1mport foo |
__hame__ 1s set to foo

Importing it as a module

Takeaway: 1f __name__ == "__main__
- If you want some statements (like test calls) to be run ONLY when

the file is run as a script

» Put them inside the guarded 1f __name__ ==
" main__" block

- When we run our automatic tests on your functions we import them

and this means name 1s NOT set to main

» So nothing inside the guarded 1f __name__ ==

__main__ " block is executed

- This way your testing /debugging statements do not get in the way

Nested Lists Additional
Examples

Nested Loops and Nested Lists

- Let us trace through the code below:

def mystery2(1lst_1lsts):
new_lstlsts = [.
for row in lst_ lsts:
new_row = [
for item in row:
new_row = new_row + [itemkitem]
new_lstlsts = new 1lstlsts + [new_row]

return new_Llstlsts

list of lists = [[1,2,3]1, [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Nested Loops

new _lIstlsts row new_row item
[] [1,2,3] []

def mystery2(1lst_1lsts):

new lstlsts = []
for row in lst_[]lsts: -l.St_-l.S'tS = | [1, 2, 3] ’
new _row =
for item in row: [4'5’6] !
new_row = new_row + [itemkxitem] [7, 8, 9]]

new lstlsts = new 1lstlsts + [new_row]
return new lstlsts

Nested Loops

new _lIstlsts row new_row item
[] 1,2,3.]
| | 1] 1
:1’2’3: 1,4] 2
1,2,3. 1,4,9 3
[[1,4,9]] 14,91

def mystery2(1lst_1lsts):

new lstlsts = []

for row in lst_[]lsts: st lsts = [[1,2,3],
new_ row =

for item in row: [4’5’6] !

new_row = new_row + [itemkxitem] [7, 8, 9]]

new_1lstlsts = new _1lstlsts + [new_row]
return new_ Llstlsts

Nested Loops

new _lIstlsts row new_row item
[] 1,2,3]]
1] 1
1,2,3 1, 4] g,
1,2,3 1,4,9 3
[[1;419]] 4’5’6]’ !]
16] 4
4,5,6 16, 25] 5
[[1 ,4 ,91, 4,5,0 16,25, 36] 6
[16,25,36]]
def mystery2(1lst_1lsts):
new lstlsts = []
for row in lst_[]lsts: st lsts = [[1,2,3],
new_row =
for item in row: [4'516] ’
new_row = new_row + [itemkxitem] [7, 3, O]]

new_1lstlsts = new _1lstlsts + [new_row]
return new_ Llstlsts

Nested Loops

new _lIstlsts row new_row item
[] 1,2, 3]]
| | 1] 1
:1’2’3: 1,4] 2
1,2,3. 1,4,9 3
[[1,4,9]] 4.5 ,6] f]' a
| _ 16] 4
42,6 16, 25] 5
[[1 ,4 ,9 1, 4,5,6] 16,25, 36] 6
16, 25,361] [7,8,9.]
. . | | 49] /
SR 7,8,9 49, 64] 8
=Dy £y 90 7,8,9. i
49,64,81]] 49,64, 81 7
def mystery2(1lst_1lsts):
new lstlsts = []
for row in lst_[]lsts: Llst 1sts = [[1,2,3],
new_row =
for item in row: [4' 5' 6] !
new_row = new_row + [itemkxitem] [7, 3, O]]

new_lstlsts = new _1lstlsts + [new_row]
return new_ Llstlsts

Nested Loops

new _lIstlsts row new_row item
[] 1,2,3]]
| | 1] 1
1,2,3! 1,4] 2
1,2,3. 1,4,9] 3
| _ 16] 4
4,2,0. 16, 25] 5
[[1 ,4 ,9 1, 4,3,6] 16,25, 36] 6
16,25,36]] 7,8,9]]
[L 7,8,9] 0]] .
: 3 L /70, I 49, 64 8
16,25, 361, 7,8,9] o
49,64,81]] RS 49,64,81])
def mystery2(1lst_1lsts):
new lstlsts = []
for row in lst_[]lsts: Llst 1sts = [[1,2,3],
new_row =
for item in row: [4'516] ’
new_row = new_row + [itemkitem] [7, 3, O]]

new lstlsts = new 1lstlsts + [new_row]
return new_ Llstlsts

Nested Loops

def mystery2(1lst_1lsts):
new lstlsts = []

for row in lst_lsts: Note the []
Accumulation variable ~ new_row = [] / "
for item in row: Why!!
new_row = new_row + [itemkitem]

Accumulation variable new_1lstlsts = new _1lstlsts + [new_row]
return new_ Llstlsts

list of lists = [[1,2,3]1, [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Nested Loops

def mystery2(1lst_1lsts):
new lstlsts = []

for row in lst_lsts: Note the []
Accumulation variable ~ new_row = [] / "
for item in row: Why?!
new_row = new_row + [itemkitem]

/Accunnﬂaﬂcwwvamabka///new_lstlsts = new_lstlsts + [new_row]
return new_1lstlsts

list of lists = [[1,2,3]1, [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Why 2 accumulation variables?! The square brackets ensure that we're
! B adding a 1ist toa list!

The inner loop accumulates the items for the
row, the outer loop accumulates the rows

What would be a good function name for mystery2?

Something like power_table

