
CS 134 Lecture:
Sequences and Loops

Announcements & Logistics
• Homework 3 will be posted to GLOW, due next Monday @ 10 pm

• Lab 1 graded feedback will be released today

• Instructions on how to view feedback on course webpage
• It may seem like an odd procedure, but we're using real-world

software development practices

• Lab 2 due today 10pm / tomorrow 10pm

• No class on Friday: Winter Carnival

• Lab 3 (with a prelab) will be released on Friday

Do You Have Any Questions?

Last Time
• Looked at more complex decisions in Python

• Used Boolean expressions with and, or, not

• Chose between many different options in our code
• if elif else chained conditionals

Today’s Plan
• Introduce iteration using for loops to iterate over sequences

• Introduce a new data type which is also a sequence:
• the 'List'

• Revisit an old type in the context of sequences:
• the 'string'

• We will discuss sequences more on Monday to fill in any remaining
gaps for Lab 3

Sequences in Python: Strings
• Sequences in Python represent ordered collections of elements:

e.g., strings, lists, ranges, etc.

• Strings (type str) are ordered sequences of individual characters

• Example: word = "Hello"

• 'H' is the first character of word, 'e' is the second character,
and so on

• Each sequence element has a position, known as its index

• In CS, we often zero-index, so we say that 'H' is at
index 0,'e' is at index 1, and so on

• We can access each character of a string using these indices

How Do Indices Work?
• Can access elements of a sequence (such as a list) using its index

• Indices in Python are both positive and negative

• Everything outside of these values will cause an IndexError.

"W i l l i a m s"
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

Note: Most other languages do not support negative indexing!

Accessing Elements of Sequences
'W i l l i a m s'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1>>> word = "Williams"
>>> word[0] # character at 0th index?
'W'
>>> word[3] # character at 3rd index?
'l'
>>> word[7] # character at 7th index?
's'
>>> word[8] # will this work?

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

Sequence Length
• The len(seq) function returns the length of the sequence seq

• Even though we zero-index, we still include the total number of
elements in the length

>>> word = "Williams"
>>> len(word) # total number of characters
8

>>> word[len(word)] # will this work?

>>> word[len(word)-1] # what about this?

'W i l l i a m s'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

's'

Iteration Motivation: Counting Vowels
• Problem: Write a function count_vowels(word) that takes a string

word as input and returns the number of vowels in the string (an int)

• We'll create a function is_vowel() to help us:

def count_vowels(word):

 '''Returns number of vowels in the word'''

 pass

>>> countVowels("Williamstown")

4

>>> countVowels("Ephelia")

4

is_vowel(char)

def is_vowel(ch) :
 return ch == 'a' or ch == 'e' or ch == 'i' or ch == 'o' or ch == 'u' \
 or ch == 'A' or ch == 'E' or ch == 'I' or ch == 'O' or ch == 'U'

First Attempt with Conditionals
• Note: val += 1 is shorthand for

 val = val + 1

• Any downsides to this approach?

• What if I change word to
"Williamstown"?

word = "Williams"
counter = 0
if isVowel(word[0]):

counter += 1
if isVowel(word[1]):

counter += 1
if isVowel(word[2]):

counter += 1
if isVowel(word[3]):

counter += 1
if isVowel(word[4]):

counter += 1
if isVowel(word[5]):

counter += 1
if isVowel(word[6]):

counter += 1
if isVowel(word[7]):

counter += 1
print(counter)
3

First Attempt with Conditionals
• Using conditionals as shown is

repetitive and does not generalize
to arbitrarily long words

• shorter word would "index out
of bounds"

• longer word would stop too
soon

• We need something else that allows us
to “loop” over the characters in an
arbitrary input string

• "For each character word, add 1if that
character is a vowel"

word = "Williams"
counter = 0
if isVowel(word[0]):

counter += 1
if isVowel(word[1]):

counter += 1
if isVowel(word[2]):

counter += 1
if isVowel(word[3]):

counter += 1
if isVowel(word[4]):

counter += 1
if isVowel(word[5]):

counter += 1
if isVowel(word[6]):

counter += 1
if isVowel(word[7]):

counter += 1
print(counter)
3

For Loops

Iterating with for Loops
• One of the most common ways to traverse or manipulate a sequence is

to perform some action for each element in the sequence

• This is called looping or iterating over the elements of a sequence

• Syntax of a for loop:

for var in seq:

 # body of loop

 # body of loop

var is called the loop variable
seq is any type of sequence

(for example, a string or a list)

Iterating with for Loops
• As the loop executes, the loop variable (char in this example) takes

on the value of successive sequence elements, one by one

>>> # small example of for loop
>>> word = "Williams"

>>> for char in word:
... print(char)

W
i
l
l
i
a
m
s

Note. Python for loops are meant specifically for iterating over
sequences and are also called a "for each" loop.

Why might we call it that?

Counting Vowels
• Let us use a for loop to implement count_vowels() function

• What do we need to keep track of as we iterate over word?

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 pass

Counting Vowels
• Notice how count “accumulates” values in the loop

• We call count an accumulation variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0 # initialize counter

 # iterate over word one character at a time
 for char in word:
 if is_vowel(char):
 count += 1 # increment counter
 return count

count 0

'o''B' 's' 't' 'o' 'n'

count_vowels('Boston')

word 'Boston'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):
 '''Takes word (str) as argument and returns
 the number of vowels in it (as int)'''

 count = 0
 for char in word:
 if is_vowel(char):
 count += 1
 return count

Exercise:
Vowel Sequences

Exercise: Vowel Sequences
• Define a function vowel_seq(word) that takes a string word and

returns a string containing all the vowels in word in the order they appear

>>> vowel_seq("Chicago")

'iao'

>>> vowels_seq("protein")

'oei'

>>> vowel_seq("rhythm")

''

What might be other good values to test edge cases?

Exercise: Vowel Sequences
• Accumulation variables don’t have to be counters!
• Can accumulate strings as well: initialize to '' instead of zero

def vowel_seq(word):
 '''Takes word (str) as input and returns
 the vowel subsequence in given word (str)'''
 vowels = "" # initialize accumulation var
 for char in word:
 if is_vowel(char): # if vowel
 vowels += char # accumulate characters
 return vowels

Lists

A New Sequence: Lists
• A list is a comma separated, ordered sequence of values.

• These values can be heterogenous (strings, ints, floats, etc)

• Example: my_list = ['Hello', 42, 23.5, True]

• Remember, we zero-index! So we say that 'Hello' is at
index 0, 42 is at index 1, and so on

• Like strings, we can access each element of a list using these indices

How Do Indices Work?
• Can access elements of a sequence (such as a list) using its index

• Indices in Python are both positive and negative

• Everything outside of these values will cause an IndexError.

['a', 'e', 'i', 'o', 'u']

0 1 2 3 4

-5 -4 -3 -2 -1

vowels = ['a', 'e', 'i', 'o', 'u']

Look familiar?
Just like string

sequences!

Features of Lists
• Lists are:

• Comma separated, ordered sequences of values

• Can be heterogenous: multiple types can appear in the same list

• Mutable (or “changeable”) objects in Pythons. In contrast, strings are
immutable (they cannot be changed).

• We will discuss mutability in more detail soon!

Examples of various lists:
>>> wordList = ["What", "a", "beautiful", "day"]
>>> numList = [1, 5, 8, 9, 15, 27]
>>> charList = ['a', 'e', 'i', 'o', 'u']

>>> type(numList)
list

>>> mixedList = [3.14, 'e', 13, True]

Lists can be heterogeneous (mixed)!

Accessing Elements of Sequences

>>> vowels = ['a', 'e', 'i', 'o', 'u']
>>> vowels[0] # character at 0th index?
'a'
>>> vowels[3] # character at 3rd index?
'o'
>>> vowels[4] # character at 4th index?
'u'
>>> vowels[5] # will this work?

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

Negative Indexing
• Negative indexing starts from -1, and provides a handy way to access

the last character of a non-empty sequence without knowing its length

Note: Most other languages do not support negative indexing!

>>> vowels = ['a', 'e', 'i', 'o', 'u']
>>> vowels[-1]
'u'

['a', 'e', 'i', 'o', 'u']

0 1 2 3 4

-5 -4 -3 -2 -1

Slicing Sequences
• We can extract subsequences of a sequence using the slicing operator [:]

• For a given sequence var, var[start:end] returns a new sequence
starting at index ‘start’ (inclusive), ending at index ‘end’ (exclusive)

• Example: Suppose we want to extract the sublist ['a','e'] from vowels
using slicing operator [:]

>>> vowels = ['a', 'e', 'i', 'o', 'u']
>>> # return the sequence from 0th index up to 1st
>>> # (not including 2nd)
>>> vowels[0:2]
['a','e']

Slicing Sequences: Using Step
• The (optional) third step parameter to the slicing operator determines in

what direction to traverse, and whether to skip any elements while
traversing and creating the subsequence

• By default, start = 0, end = len(), step = +1 (which means
move left to right in increments of one)

• If we omit any of the three parameters, slice uses the default values

>>> evens = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>>> evens[0:5] # start is 0, end is 5, step is +1
[2, 4, 6, 8, 10]
>>> evens[:8:2] # start is 0, end is 8, step is +2
[2, 6, 10, 14]
>>> evens[::2] # start is 0, end is 10, step is +2
[2, 6, 10, 14, 18]

Slicing Sequences: Optional Step
• When the step parameter is set to a negative value it gives a nifty way to

reverse sequences

• Note: start and end are interpreted “backwards” when using a
negative step!

>>> evens = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>>> evens[::-1] # reverse the sequence
[20, 18, 16, 14, 12, 10, 8, 6, 4, 2]
>>> evens[::-2]
[20, 16, 12, 8, 4]
>>> evens[8:0:-1]
[18, 16, 14, 12, 10, 8, 6, 4]

Other List Operators

Length of a Sequence
• Python has a built-in len() function that computes the length of a

sequence such as a list (or any other sequence like a string)

• For a list, len() returns the number of elements in the list

• Thus, any list called words has the following (positive) indices
 0, 1, 2, ..., len(words)-1

>>> len(['a', 'e', 'i', 'o', 'u'])
5

>>> len(["Chels", "Artie", "Pixel", "Linus"])
4

Testing Membership: in Operator
• The in operator in Python is used to test if a given sequence is a

subsequence of another sequence; returns True or False

>>> "i" in ['a', 'e', 'i', 'o', 'u']
True

>>> "a" in ['a', 'e', 'i', 'o', 'u']
True

>>> "A" in ['a', 'e', 'i', 'o', 'u'] # caps matter
False

Membership in Sequences
• The in operator in Python is used to test if a given sequence is a

subsequence of another sequence; returns True or False

>>> dogList = ["Chels", "Artie", "Pixel", "Linus"]
>>> "Linus" in dogList
True
>>> "Dizzy" in dogList
False

not in sequence operator
• The not in operator in Python returns True if and only if the given

element is not in the sequence

Note that not in also works for strings

>>> "Dizzy" not in dogList
True

>>> dogList = ["Chels", "Artie", "Pixel", "Linus"]
>>> "Linus" in dogList
True
>>> "Dizzy" in dogList
False

>>> "z" not in "Linus"
True

• We can use the + operator to concatenate lists together

• Creates a new list with the combined elements of the sublists
• Does not modify original lists!

List Concatenation

aList is unchanged!

To change bList, we have to reassign bList to the new list

>>> aList = ["the", "quick", "brown", "fox"]
>>> bList = ["jumped", "over", "the", "dogs"]
>>> aList + bList # concatenate lists
['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'dogs']

returns a new list with elements
from aList and bList

>>> aList
['the', 'quick', 'brown', 'fox']
>>> bList = bList + ["back"] # add "back" to bList
>>> bList # since we reassign result to bList, bList has changed
['jumped', 'over', 'the', 'dogs', 'back']

Review: Basic Operations on Sequences

Finding length of list using len()

Slicing lists using [:] (can also use optional step)

>>> wordList = ["What", "a", "beautiful", "day"]
>>> wordList[3]
'day'

>>> wordList[-1]

>>> len(wordList)
4

'day'

>>> dogList = ["Chels", "Artie", "Pixel", "Linus"]
>>> dogList[2:4]

Indexing lists using []

['Pixel', 'Linus']

Sequence Operations

All of these operators work on both strings and lists!

Operation Result

seq[i] The i'th item of seq, when starting with 0

seq[si:ee] slice of seq from si to ee

seq[si:ee:s] slice of seq from si to ee with step s

len(seq) length of seq

seq1 + seq2 The concatenation of seq1 and seq2

x in seq True if x is contained within seq

x not in seq False if x is contained within seq

