CS |34 Lecture:

Sec

Uuences anc

| 00

DS

Announcements & Logistics

Homework 3 will be posted to GLOW, due next Monday @ |10 pm

Lab | graded feedback will be released today
Instructions on how to view feedback on course webpage

't may seem like an odd procedure, but we're using real-world
software development practices

Lab 2 due today 10pm / tomorrow |0pm
No class on Friday: Winter Carnival

Lab 3 (with a prelab) will be released on Friday

Do You Have Any Questions?

L ast [Ime

Looked at more complex decisions in Python
Used Boolean expressions with and, or, not
Chose between many different options in our code

1T elif else chained conditionals

Jloday's Plan

Introduce iteration using for loops to iterate over sequences
Introduce a new data type which Is also a sequence:

the 'List’
Revisit an old type In the context of sequences:

the 'string’

We will discuss sequences more on Monday to fill in any remaining
gaps for Lab 3

Seqguences In Python: Strings

Sequences In Python represent ordered collections of elements:
e.g,, strings, lists, ranges, etc.

Strings (type STr) are ordered sequences of individual characters
Example: word = "Hello"

"H" is the first character of word, 'e" is the second character,
and soO on

Fach sequence element has a position, known as 1ts

In CS, we often zero-index, so we say that 'H' is at
index 0,'e" is at index |, and so on

VWe can access each character of a string using these indices

How Do Indices Work!?

Can access elements of a sequence (such as a list) using its index
Indices In Python are both positive and negative

Everything outside of these values will cause an IndexError.

O 1 2 3 4 5 6 7

"W 1 ll1ams"
8 7 6 -5 -4 3 2 -1

Note: [Most other languages do not support negative indexing!

>>2>
>>>

"W
>>2>
'
>>2>
g !
>>2>

Accessing Elements of Sequences

0
‘W

k.

3 O
n -

word = "Williams"
word[@] # character at 0th index?

word[3] # character at 3rd index?

word[7] # character at 7th index?

word[8] # will this work?

Traceback (most recent call last):

File "<stdin>",

line 1, in <module>

IndexError: string index out of range

8

- M

AN~ N
N~ W
I RN

W A W

\

k.

Sequence Length

he (seq) function returns the length of the sequence seq

Even though we zero-index, we still include the total number of
elements In the length

[E—

0
IW . 1
>>> word = "Williams" 8- 2 -l

>>> len(word) # total number of characters
8

6 7
m s

-

N~ N
N —~ W
I RN
W A W

>>> word[len(word)] # will this work?

Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>

IndexError: string index out of range

>>> word|[len(word)-1] # what about this?
ISI

teration Motivation: Counting Vowels

Problem: Write a function count_vowels (word) that takes a string
wo rrd as input and returns the number of vowels in the string (an int)

We'll create a function 1s_vowe L () to help us:

def count vowels(word):

'""TReturns number of vowels 1n the word'''

pass

>>> countVowels("Williamstown")

4
>>> countVowels("Ephelia")

4

s_vowel(char)

is_vowel(ch) :

return ch
ch

First Attempt with Conditionals

| word = "Williams™
+ Note: val += 1 is shorthand for counter = 0

if isVowel(word[0]):

val = val + 1 counter += 1

if isVowel(word[1]):

counter 1

if isVowel(word[2]):

counter 1

Any downsides to this approach!? if isVowel(word[3]):
counter 1

+ What if | change word to if isVowel(word[4]):
counter 1

"Williamstown'? if isVowel(word[5]):
counter 1
if isVowel(word[6]):
counter 1
if isVowel(word[7]):
counter 1
print(counter)
3

First Attempt with Conditionals

| N | word = "Williams"
» Using condrtionals as shown Is counter = 0
repetitive and does not generalize 1f isVowel(word[0]):
| | counter 1
to arbitrarily long words if isVowel(word[1]):
counter 1
« shorter word would "Index out if isVowel(word[2]):
" counter 1
of bounds if isVowel(word[3]):
counter 1
» longer word would stop too if isVowel(word[4]):
SOON counter 1
if isVowel(word[5]):
We need something else that allows us ~counter 1
to “loop” over the characters in an 1f isVowel(word[6]):
. . . counter 1
arbitrary input string if isVowel(word[7]):
counter 1

Foreadw;hamxiervwmriadd [if that orint(counter)
character is a vowel" 3

~or Loops

terating with for Loops

»+ One of the most common ways to traverse or manipulate a sequence is

to perform some action for each element in the sequence

- This is called looping or iterating over the elements of a sequence

» Syntax of a for loop:

for var 1n seq:
body of loop
body of loop

terating with for Loops

» As the loop executes, the loop variable (Char in this example) takes

on the value of successive sequence elements, one by one

>>> # small example of for Lloop
>>> word = "Williams"

>>> for char in word:
print(char)

Note. Python for loops are meant specifically for iterating over
sequences and are also called a "for each" loop.

n 3R ~—R =

Why might we call it that!

Counting Vowels

- Let us use a for loop to implement count_vowels () function

+ What do we need to keep track of as we iterate over word?

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

pass

Counting Vowels

* Notice how count “accumulates” values in the loop

« We call count an accumulation variable

def count vowels(word):
''"'Takes word (str) as argument and returns
the number of vowels in it (as int)'"''

count = 0 # initialize counter

1terate over word one character at a time
for char 1n word:
if is vowel(char):
count += 1 # increment counter
return count

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 count_vowels('Boston')

return count

word | 'Boston'

count 0

Loop variable char B | 'o ' 't o

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 countVowels('Boston')

return count

word | 'Boston'

count

Loop variable char B | 'o'|'s 't o

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 countVowels('Boston')

return count

word | 'Boston'

count

Loop variable char B o' ' |t o

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 countVowels('Boston')

return count

word | 'Boston'

count

Loop variable char B 'o S|t |'o

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 countVowels('Boston')

return count

word | 'Boston'

count P

Loop variable char B o ' 1t | 'o

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 countVowels('Boston')

return count

word | 'Boston'

count P

Loop variable char B 0o ' 't o

EXercise:
Vowel Sequences

Exercise: Vowel Sequences

» Define a function vowel_seq(word) that takes a string word and
returns a string containing all the vowels in word in the order they appear

>>> yowel _seq('"Chicago")

1a0

>>> vowels_seq("protein")

O€l

>>> vowel_seq('"rhythm")

What might be other good values to test edge cases!

Exercise: Vowel Sequences

- Accumulation variables don’t have to be counters!

- Can accumulate strings as well: initialize to " instead of zero

def vowel seq(word):
''"'Takes word (str) as input and returns
the vowel subsequence in given word (str)'''

vowels = """ # 1initialize accumulation var
for char 1in word:

if is_vowel(char): # if vowel

vowels += char # accumulate characters
return vowels

| Ists

A New Sequence: Lists

A list Is a comma separated, ordered sequence of values.
» These values can be heterogenous (strings, ints, floats, etc)
Example: my_list = ['Hello', 42, 23.5, Truel

Remember, we zero-index! So we say that 'Hello' is at
index O, 42 is at index |, and so on

Like strings, we can access each element of a list using these indices

How Do Indices Work!

Can access elements of a sequence (such as a list) using its index
Indices In Python are both positive and negative

Everything outside of these values will cause an IndexError.

0 1 2 3 4
[Ial’ Iel’ Ill’ IOI’ Iul]
5 4 3) 1

Features of Lists

« Lists are:

- Comma separated, ordered sequences of values

- (Can be : multiple types can appear in the same list

- Mutable (or“changeable™) objects in Pythons. In contrast, strings are

immutable (they cannot be changed).

* We will discuss mutability in more detail soon!

Examples of various Llists:

>>>
>>>
>>>
>>>
>>>

wordList = ["What", "a", "beautiful", "day"]
numList = [1, 5, 8, 9, 15, 271

charList = ['a', 'e', 'i', 'o', 'u'l
mixedList = [3.14, 'e', 13, Truel
type(numList)

list Lists can be heterogeneous (mixed)!

Accessing Elements of Sequences

>>> VO\/\Ie-l_5= [Ial’ Iel’ Iil’ IOI’ Iul]
>>> yowels[@] # character at 0th index?
Ial

>>> yowels[3] # character at 3rd index?
IOI

>>> vowels[4] # character at 4th index?

>>> yowels[5] # will this work? o 1 2 3

Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>
IndexError: list index out of range

Negative Indexing

Negative indexing starts from -1, and provides a handy way to access
the last character of a non-empty sequence without knowing its length

>>> yowels = ['a',
>>> yowels[-1]

"u

Note: Most other languages do not support negative indexing!

Slicing Sequences

Ve can extract subsequences of a sequence using the operator [1]

For a given sequence var, var[start:end] returnsa new sequence
starting at index ‘start’ (inclusive), ending at index ‘end’ (exclusive)

Example: Suppose we want to extract the sublist ['a', 'e'] from vowels
using slicing operator [&]

SSS Vowe'LS= [IaI’ Iel’ Iil’ IOI’ Iul]
>>> # return the sequence from 0th index up to 1st
>>> # (not including 2nd)

>>> yowels[0:2]
[Ial’lel]

Slicing Sequences: Using Step

The (optional) third step parameter to the slicing operator determines in
what direction to traverse, and whether to skip any elements while
traversing and creating the subsequence

By default, start = @, end = len(), step = +1 (which means
move left to right in increments of one)

T we omit any of the three parameters, slice uses the default values

>>> evens = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>>> evens|[0:5] # start is 0, end is 5, step is +1
[2, 4, 6, 8, 10]

>>> evens[:8:2] # start is 0, end is 8, step is +2
[2, 6, 10, 14]

>>> evens|[::2] # start is 0, end is 10, step 1is +2
[2, 6, 10, 14, 18]

Slicing Sequences: Optional Step

When the step parameter Is set to a negative value It gives a nifty way to

FEVErse sequences

Note: start and end are interpreted “backwards” when using a
negative step!
>>> evens = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>>> evens[::-1] # reverse the sequence
[20, 18, 16, 14, 12, 10, 8, 6, 4, 2]

>>> evens|[::-2]
[20, 16, 12, 8, 4]

>>> evens[8:0:-1]
[18, 16, 14, 12, 10, 8, 6, 4]

Other List Operators

:) 8 b & e\
J=F-ImIS Ky Rud IO

Length of a Sequence

- Python has a built-in Llen () function that computes the length of a
sequence such as a list (or any other sequence like a string)

+ Foralist, len() returns the number of elements in the list

» Thus, any list called words has the following (positive) indices
o, 1, 2, ..., len(words)-1

>>> len(['a', 'e', 'i', 'o', 'u'l)

5

>>> len(["Chels", "Artie", "Pixel", "Linus"])

Testing Membership: 1n Operator

The 1n operator in Python is used to test if a given sequence is a
subsequence of another sequence; returns True or False

>>> Ilill in [Ial’ Iel’ Iil’ IOI Iul]
True
>>> Ilall in [IaI’ IeI’ Iil’ IOI’ Iul]
True

>>> "A" in ['a', 'e', 'i', 'o', 'u'l # caps matter
False

Membership In Sequences

»+ The 1n operator in Python is used to test if a given sequence is a
subseguence of another sequence; returns Irue or False

>>> doglList = ["Chels", "Artie", "Pixel", "Linus"]
>>> "Linus" 1n doglList .
True o
>>> "Dizzy" 1n doglList
False

not 1n sequence operator

» The not 1n operator in Python returns True if and only if the given
element 1s not in the sequence

>>> dogList = ["Chels", "Artie", "Pixel", "Linus"]

>>> "Linus" in doglList " ~
True o e
>>> ""Dizzy" 1n doglList

False

>>> "Dizzy" not in doglList

True

>>> "z" not in "Linus"
True ——— Note that not 1n also works for strings

| Ist Concatenation

- We can use the + operator to concatenate lists together

« (Creates a new list with the combined elements of the sublists

returns a new list with elements

. ' Tol INEN
Does not modify original lists: it o blict

>>> glist ["the", "quick", "brown", " frox"]

>>> bList = ["jumped", "over", "the", "dogs"]

>>> glList + bList # concatenate Llists

['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'dogs']
>>> glist

['the', 'quick', 'brown', 'fox'] aList is unchanged!
>>> pList = bList + ["back"] # add "back" to bList

>>> bList # since we reassign result to bList, bList has changed

['jumped', 'over', 'the', 'dogs', 'back']

To change blist, we have to reassign bList to the new list

Review: Basic Operations on Sequences

>>> wordList = ["What", "a'", "beautiful", "day"]
>>> wordList[3]

Indexing lists using |]
i day i

>>> wordList[-1]
i day i

>>> len(wordList) Finding length of list using len()
4

>>> dogList = ["Chels", "Artie", "Pixel", "Linus"]
>>> dogList[2:4]

Slicing lists using [:] (can also use optional step)
['Pixel', 'Linus']

Sequence Operations

Operation Resuit
seqg[1] The 1'th item of seq, when starting with O
seq[s1:ee] slice of seq from S1 to ee
seg[si:ee:s] slice of seq from S1 to ee with step S
len(seq) length of seq
segql + seqg’l The concatenation of sedl and seqgZ
X 1n seq True if X is contained within seq
X not 1n segq False if X is contained within seq

All of these operators work on both strings and lists!

